| 研究生: |
陳銘軒 CHEN, MING- SYUAN |
|---|---|
| 論文名稱: |
含黏性薄層砂土承受夯擊之實驗研究 The Experimental Study on Sandy Soils with Cohesive Thin Layer Subjected to Impacts |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 172 |
| 中文關鍵詞: | 動力夯實 、黏性薄層 、自動圓錐貫入 、動態水壓分布 |
| 外文關鍵詞: | Dynamic compaction, Cone resistance, Dynamic water pressure distribution, Cohesive thin layer |
| 相關次數: | 點閱:187 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用實驗探討土層受夯擊後,黏性薄層對土中動應力與圓錐阻抗之影響。室內單擊試驗系統及自動圓錐貫入系統來探討薄層之厚度、數量與深度對夯擊成效之差異。本試驗分別為乾土夯擊試驗與飽和不排水夯擊試驗,分別利用圓筒型土模與中型砂箱進行之。乾土夯擊試驗主要探討砂土中含黏性薄層於三種不同深處(淺層,中層,深層),不同厚度與薄層數時,在相同能量下,以重量0.5kgf與1kgf之圓柱夯錘夯擊後,其土中動應力增量、圓錐貫入阻抗尖峰值與貫入阻抗x深度總和(貫入功)之變化量。飽和不排水夯擊試驗主要探討土壤試體薄層下動態水壓之激發與消散的情形,有無薄層存在時,砂土之超額孔隙水壓激發情形與建立液化區域分布,並瞭解砂箱立管式與電子式水壓計之間的差異。
實驗結果顯示,薄層之深淺與垂直之動應力增量關係密切,隨著薄層位置越淺其垂直動應力增量越低。薄層厚度增厚,0.5kgf夯錘造成之動應力衰減比1kgf夯錘者為多,薄層數越多,動應力傳遞越差。隨薄層數越多,0.5kg夯錘之貫入功與1kgf者差異越大。在飽和不排水夯擊試體分析中,位於高程233mm之激發水壓消散性比133mm者為佳,動態水壓隨夯擊次數增加而增加,而含黏性薄層之動態水壓隨著夯擊次數,由平台型水壓分布轉變尖峰型水壓分布。無黏性薄層之動態水壓則均呈尖峰型水壓分布。土壤液化區域則發生在無薄層之上層處,且隨著夯擊次數增加,液化區域漸趨縮小,顯示夯擊能量對於土壤抗液化能力之貢獻。
關鍵字:動力夯實、黏性薄層、自動圓錐貫入,動態水壓分布。
This experimental study presents the impacts on the dynamic stress and cone resistance due to the existence of the cohesive thin layer in soils during dynamic impacts. Through the Single-point Impact Test (SIT) and Automatic Cone Penetrometer (ACP), the effectiveness of impacts on soil with different conditions of cohesive thin layers is figured out. Two types of experiments are performed in this study, dry impact test and saturated undrained impact test, which were carried out in the cylindrical soil mold and sand box, respectively. In the dry impact tests, soils with thin layers embedded in three levels, different thickness and numbers are impacted under the same impact energy, but using two types of tampers, 0.5kgf and 1.0 kgf. After impacts, the dynamic stresses, peak values of cone resistances and the penetration work (summation of cone resistance times the corresponding depths) were obtained and analyzed for discussion. In the saturated undrained impact tests, the raise and dissipation of the excess pore water pressures in the sands after impacts were discussed for cases with or without thin layer. Besides, the zone of the soil liquefaction is visualized based on the measured excess pore water pressures. The difference between stand-pipe piezometer and electronic piezometer are also presented.
The results indicate that the dynamic stresses decrease with the decreasing depth of the thin layer. As the thickness of thin layer increases, the decline ratio of dynamic stress induced by the tamper of 0.5kgf is greater than that of 1.0 kgf. As the number of thin layer increases, the more the dynamic stress declines. and the penetration works done by tampers of 0.5 kgf and 1.0 kgf are quite different.
In the saturated undrained impact tests, the dissipation rate of excess pore water pressure induced at level of 233mm is higher than that at level of 133mm. The dynamic water pressure increases with the numbers of impacts. The distribution shape of dynamic water pressure for soils with thin layer is changing from the platform shape to peak shape as the impacts increased. The soil liquefaction zone occurred at the top layer of the soils without thin layer and the zone area decreased with the number of impacts, which indicate the contribution of the impact energy on the liquefaction resistance of the soils.
1.山田正俊,「動壓密工法」,軟弱地盤改良工法之相關現狀講演會資料,第89~97 頁(1982)。
2.王冠彬,「含細料砂質改良土之力學性質」,碩士論文,國立中央大學土木工程研究所,桃園(2004)。
3.王盛源、陳德中,「填充夯加固珠江三角洲超軟淤泥基地」,第六屆全國土力學及基礎工程會議論文集,上海,第541-544頁(1991)。
4.史美筠,「強夯法施工參數的確定及施工中震動影響問題」,土建專題情報資料—軟土地基處理與強夯法,中國建築技術發展中心文獻部,第30~33 頁(1988)。
5.李奕,「動壓密工法施工中能量問題探討」,碩士論文,國立台灣海洋大學河海工程研究所,基隆,第10~35 頁(1994)。
6.李建南,「改良砂土現地試驗參數相關性之研究」,碩士論文,國立臺灣海洋大學河海工程學系,基隆(2001)。
7.余俊達,「含水不均質砂土層承受夯擊及荷載之應力分佈」,碩士論文,國立成功大學木工程研究所,台南(1999)。
8.林鴻文,「動力壓密工法之改良效果及其力學機制」,碩士論文,國立中央大學土木工程研究所,桃園(1996)。
9.林志穎,「含細粒料砂土層受夯擊時之應力分佈」,碩士論文,國立成功大學木工程研究所,台南(1998)。
10.林英堂、陳逸駿、何泰源、余明山、曹源暉,「建築物基礎構造設計規範修訂之研究—地層改良」,內政部建築研究所協同研究報告,第174~208 頁,(2004)。
11.林保全,「水位與排水條件對動力夯實成效之實驗研究」,碩士論文,國立成功大學木工程研究所,台南(2007)。
12.吳偉特、楊騰芳,1987「細粒料在不同影響因素中對台灣地區沉積性沙土液化特性之研究」,土木水利,第十四卷,第三期。
13.范維垣、史美筠、裘以惠,「關於強夯法加固地基的幾個問題」,地基處理學術會議論文選集,第7~15 頁(1980)。
14.梁曉光,「濱海抽砂造地工程」,中興工程,第42 期,第45~62 頁(1994)。
15.張吉佐、方仲欣,「水送填土造地之研討」,地工技術雜誌,第51期,第5-20 頁(1995)。
16.張永鈞、平湧潮、孔繁峰、張峰,「強夯法處理大塊拋石地基的試驗研究」,第三屆全國地基處理學術討論會論文集,秦皇島,第395-400頁(1992)。
17.陳景文、廖哲民,「動力壓密工法對砂土層進行土壤改良之研究」,第二十屆全國力學會議論文集,台北,第508~514 頁(1996)。
18.陳景文、廖哲民,「以動力壓密工法改良海埔新生地工程性質之探討」,第十八屆海洋工程延討會論文集,第748~757 頁(1996)。
19.陳景文、廖哲民,「動力壓密工法對砂土層進行土壤改良之研究」,第二十屆全國力學會議論文集,台北,第508~514 頁(1996)。
20.陳斗生、俞清翰、葉嘉鎮,「海埔新生地的大地工程問題之探討-以六輕基地為例(上篇)」,地工技術,第98~99 頁(1996)。
21.陳景文、李維峰、陳福成、林保全,「隔離降水對動力夯實之效益評估」,海峽兩岸岩土工程/地工技術交流研討會,天津,地281~288 頁(2007)。
22.陳福成,「浚填砂土水位對動力夯實成效影響之研究」,博士論文,國立成功大學木工程研究所,台南(2007)。
23.黃建順、鍾毓東,「土壤改良-動力壓密法」,地工技術,地四期,第73~87 頁(1983)。
24.馮道偉、陳向巡、倪贊堯,「動力夯擊夯擊參數之案例分析」,第八屆大地工程學術研討論文會,第1473~1482 頁(1999)。
25.葛致中,「驗證動力夯實夯錘夯擊效應效益之研究」,碩士論文,私立中原大學土木工程學系,桃園(2002)。
26.鳴海直信,「最近軟弱地盤對策工法設計施工例—動力壓密工法」,月刊建設,第69 ~78 頁(1987)。
27.廖哲民,「動態應力作用下砂土層之應力分佈」,博士論文,國立成功大學木工程研究所,台南(1999)。
28.廖洪鈞、陳福勝,地盤改良設計施工及案例,科技圖書出版社,台北(2006)。
29.彭大用,「強夯法處理多層住宅鋼渣填土地基初探」,第三屆全國地基處理學術討論會論文集,秦皇島,第415-418頁(1992)。
30.楊佚,「強夯法加固回填土地基的試驗研究」,第六屆全國土力學及基礎工程會議論文集,北京,第703-706頁(1991)。
31.劉惠珊、周根壽、陳克景,「625t-m強夯加固冶金渣」,第五屆全國土力學及基礎工程會議論文集,北京,第552-527頁(1987)。
32.劉鑫全,「片狀沙土經水力填築後之動態變形特性」,碩士論文國立中央大學土木工程研究所,桃園(1995)。
33. 潘少昀、黃子明,「動力壓密工法在海埔新生地地盤改良工程之應用」,第六屆大地工程研討會,阿里山,第1071~1082 頁(1995)。
34.潘少昀、黃子明,「台塑麥寮重機械廠動力壓密地盤改良」,地工技術雜誌,第51期,第35~50頁(1995)。
35.錢征、李廣武,「強夯法加固細砂基地」,第三屆全國土力學及基礎工程會議論文集,杭州,第315-323頁(1979)。
36.聶海平、李最新,「強夯法處理嵩城熱電廠鬆沙基地」,第三屆全國地基處理學術討論會論文集,秦皇島,第401-404頁(1992)。
37.蔡漢傑,「大尺度模型試驗探討砂土層承受夯擊時之應力分不研究」,碩士論文,國立成功大學木工程研究所,台南(1998)。
38.鍾毓東、葉嘉鎮、吳偉康、余名山,「深層夯實改良應用於新生地之案例」,地工技術,第五十一期,第67 ~78 頁(1995)。
39.魏大偉,「砂土承受動力壓密工法之應力分佈研究」,碩士論文,國立成功大學木工程研究所,台南(1997)。
40.Aziz,M.A. “Treatment of Peaty Soils ,”Proceeding of the 9 the Southeast Asia Conference on Soil Engineering , Taipei , Taiwan , pp.431-446 (1980).
41.Bossinesq, J., “Application des Potentials a L’Etude de L’Equilibre et duMouvent des Solides Elastiques,”Gauthier-Villars, Paris, (1883)。
42.Carrier, W. D., “Report on Session2 Material Properties,”Hydraulic FillStructures , ed. By D. J.A. Van Zy1 and Steven G. Vick, Geotechnical Special Publication, ASCE, No.21, pp.203~226 (1988).
43.Choa,A., “Geotechnical Aspects of a Hyfdraulic Fill Reclamation Project,”6th Southeast Asian Conference on Soil Engineering, Taipei,pp469-484(1980).
44.Charles, J. A. and Watis K. K., “a Field Studt of the Dynamic Consolidation Ground Treatment Technique on Soft Alluvial Soil,”Ground Engineerinf,pp.17-25(1982).
45.Derakhshandeh, M., “Dynamic Compaction of Sanitary Landfil with HighWater Tables,”Colorado Dept. of Highways(1985).
46.Gambin,M. P. “Dynamic Consolidation of Volcanic Ash in Sumatra,”9th Southeast Asian Geotechnical Conference, Thailand,pp145-158(1978).
47.Hansbo, S., “Dynamic Consolidation of Soils by a Falling Weight,”Ground Engineering, Vol. 11, No. 5, pp.27~36 (1978).
48.Hanzawa, H., “Improvement of a Quick sand, ”Proceedings of the 10th ICSMFE,Tokyo,pp745-748(1981).
49.Imai, G., “Experimental studies on sedimentation mechanism and sediment formation of clay materials,” Soils and Foundations , Vol.21,No.1, pp. 7-20 (1981).
50.Ishihara,K, ,“Characteristics of Liquefied Sands during Earthquakes,of ”Geotechnique,Vol.43,No.3,pp351-415,(1993) .
51.Jessberger, H. L. and Beine, R. A.,“Heavy Tamping:Theoretical and Practical Concepts,” Proceedings of the 10thICSMFE, Vol.3Stockholm,Tokyo, pp.695~699 (1981).
52.Kast,K. and Brauns, J., “Dynamic Compaction ofRockfill samples,” Proceedings of the 10th ICSMFE,Tokyo,pp669-671(1981).
53.Ladd, R.S., Cutter, “Preparing Test Specimens Using Under compaction, ” Geotechnical Testing Journal,Vol.1,No.1,March, pp.16-23(1978).
54.Leonards, G. A., Cutter, W. A., and Holtz, R. D.,“Dynamic Compaction of Granular Soils,” Journal of the Geotechnical Enginnering Division,ASCE, Vol. 106, No. GT1, pp.35-44 (1980).
55.Lukas, R. G., “Densification of Loose Deposits by Pounding,” Journal ofthe Geotechnical Enginnering Division, ASCE, No. GT4, pp.435~446(1980).
56.Lukas, R. G., "Geotechnical Engineering Circular No.1 DynamicCompaction," U.S. Department of Transportation, Federal HighwayAdministration, pp.255~316 (1995.
57.Menard, I. , “The Dynamic Consolidation of Foundation Soil”, Revue SolsFounds, No. 320(1974).
58.Menard, L. and Broise, Y., “Theoretical and Practical Aspects of DynamicConsolidation,” Geotechnique, Vol. 25 No. 1, pp.3~18 (1975).
59.Mitchell, J. K., “Soil Improvement - State-of-the-Art-Report,”Proceedings of the 10th ICSMFE, Stockhom, Vol. 4,pp. 509~521(1981).
60.Mayne, P. W., Jones, J. S., and Dumas, J. C., "Ground Response to Dynamic Compaction," Journal of Geotechnical Engineering, ASCE, Vol.110, No.6, pp.757~774 (1984).
61.Mayne, P. W. and Jones, J. S., "Impact Stresses during Dynamic Compaction," Geotechnique, Vol. 109, No. 10, pp.1342~1346 (1984).
62.Menard Soltraitement, “Dynamic Consolidation Final Report:Anti liquefaction Treatment for the Heavy Equipment Plant,” (1994).
63.Mori, Hiroshi, “Compaction of the Deep Fine of Boulder Soils by Impact,” 5th Southeast Asian Conference on Soil Engineering , Bangkok,Thailand,pp389-399(1977).
64.Ramaswamy, S. D. et al. , “Trement of peaty clay by high energy impact,” Journal of the Geotechnical Enginnering Division , ASCE, Vol. 105, No. GT8,957-967(1979).
65.Sladen, J. A. and Hewitt, K. J., “Influence of Placement Method on the In-Situ Density of Hydraulic Sand Fills,” Canadian Geotechnical Journal, Vol.26, pp.453-466(1989).
66.Woods, R. D., “Screen of Surface Waves in Soils, ” Journal of the Soil Mechanics and Foundation Division , ASCE, Vol. 94, No. SM4, pp.951~979(1968).