簡易檢索 / 詳目顯示

研究生: 黃耀翰
Huang, Yao-Han
論文名稱: 利用光配向技術製作之軸對稱液晶元件
Axially Symmetrical Liquid Crystal Devices Based on Photo-alignment
指導教授: 傅永貴
Fuh, Y.G. Andy
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 94
中文關鍵詞: 液晶光渦流
外文關鍵詞: liquid crystal, q-plate, optical vortex
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究利用光配向製作之軸對稱液晶元件的光電特性。液晶是一種很多應用的材料,可調製光束相位並應用於顯示技術元件、光電元件、生醫光電元件等領域。當摻雜偶氮染料之液晶經適當波長之雷射激發後,摻雜在液晶中的偶氮染料會經歷trans-cis兩個狀態的來回改變,然後染料分子會轉向、擴散至基板,最後吸附在面向入射雷射光的基板上並完成配向,此一過程即為『光配向』。本論文的實驗主要可分成三個部分。

    第一部分,製作液晶q-plate並研究其電控特性。此一元件可調控線性偏振高斯雷射光束的雷射光斑形狀以及轉換雷射光束中的線性偏振分佈。論文中所展示的光場強度模擬分析以及雷射光束中的線性偏振分布模擬分析則是利用MATLAB與 1D-DIMOS這兩套軟體,模擬所得之結果與實驗現象高度吻合。此一元件可用電控方式,施加不同電壓達成三種不同模態的光場調變切換。

    第二部分,結合兩種不同q值製作液晶q-plate,此一元件命名為(advanced LC QPs)。此一元件亦可調製光束的空間相位分佈以產生光渦流,並且利用不同q值做搭配以控制圓偏振雷射光束的光束形狀,同時保有螺旋相位分佈的特性。再提出利用麥克森干涉儀檢驗液晶q-plate(或ALCQPs),此一方式可同時與一般麥克森干涉之圖形做比較,以達到對螺旋相位分佈的直觀了解。

    最後是將同心圓軸對稱配向與放射狀軸對稱配向結合夫聶爾透鏡(Fresnel lens)製作成液晶聚焦透鏡。此元件以線性偏振入射光測試,其一階聚焦效率可達到35%,並將出射光轉換成軸對稱分佈的線性偏振光。此一液晶夫聶爾透鏡為偏振獨立,且可利用施加電壓達到調控聚焦效率的目的。實驗結果的遠場光學繞射強度分佈圖與模擬之結果亦高度吻合。

    本論文中所研製的液晶元件如液晶q-plate(或ALCQPs),都具有高度潛力可應用於各種領域,如光鉗系統、量子資訊傳輸、光斑調控、相位調變、偏振轉換器等。

    This dissertation studies the electro-optical properties of axially symmetrical (AS) liquid crystal (LC) devices based on photoalignment. LCs are powerful materials that can be used in light-beam phase, display, optoelectronic, and biophotonic devices. When a dye-doped liquid crystal (DDLC) cell is excited by a laser beam with a suitable wavelength, the azo dye molecules in the LC host undergo trans-cis isomerization, thus resulting in reorientation, diffusion, and finally, adsorption onto substrate surface(s). This process is called photoalignment. This dissertation has three parts, which are summarized as follows.

    In the first part, LC q-plate (QP) was fabricated and demonstrated as an electrically tunable device. This device can be modulated to control the shape and polarization of a linearly polarized Gaussian laser beam that propagates through it. The intensity profile and polarization distribution of the modulated light beam were simulated by MATLAB and 1D-DIMOS. Results of the simulation are consistent with the experimental findings. In the fabricated electrically tunable LC QP device, switching between different beam-profile configurations can be achieved by applying a voltage.
    In the second part, electrically advanced LC QPs (ALCQPs) that combine two q values in one device were investigated. The electrically tunable ALCQP device can be modulated to generate optical vortex beams, and to control the shape and polarization of a circularly polarized Gaussian laser beam that propagates through the device. A Gaussian beam modulated by an ALCQP under a suitable applied voltage exhibits a variation beam shape with a helical wave front, as demonstrated by Michelson’s interference.
    Finally, a Fresnel lens with radial and azimuthal LC alignments in the odd and even zones was demonstrated in the third part. This device has a focusing efficiency of approximately 35%, as determined by using a linearly polarized probe beam. In addition, the lens converts the input linear polarization into AS polarization at the focal plane. The fabricated Fresnel lens is polarization-independent and has electrically controllable focusing efficiency. Moreover, the far-field pattern of the probe beam passing through the device that is placed between the polarizers agrees with the pattern obtained from the simulation.
    The fabricated devices, including LC QP and ALCQP, that are presented in this dissertation have high potential for practical applications in numerous areas such as optical tweezers systems, beam-shape and polarization modulators, and material processing.

    摘要 III Abstract V 圖目錄 XI 表目錄 XIV Preface XVII Chapter 1: Introduction 1 1. Liquid crystal 1 1-1. Categories of liquid crystals 2 1-2. Phases of rod-like thermotropic liquid crystal 4 1-3. Physics of liquid crystals 8 1-4-1. Optical anisotropy (birefringence) 8 1-4-2. Field-induced reorientational 12 1-4-3. Elastic continuum theory of liquid crystal 15 1-4-4. Temperature effects on nematics liquid crystal 17 Chapter 2: Basic theories 18 2-1. Light induced LC molecules reorientation effect 18 2-1-1. Azo dyes 18 2-1-2. Photo-isomerization 19 2-1-3. Adsorption and Desorption Effect 20 2-1-4. Positive Torque Effect: Jànossy Model 21 2-1-5. Negative Torque Effect: Gibbons Model 22 2-1-6. Single-side and Double-sided Photo-alignments 24 2-2. Jones Matrix Method 25 2-2-1. Jones Vector 25 2-2-2. Jones Matrix 26 2-2-3. Jones matrix of non-uniform birefringence film [2, 9] 29 2-3. Theory of fundamental liquid crystal devices 31 2-3-1. Homogeneous alignment liquid crystal device 31 2-3-2. Twist Nematic liquid crystal (TN-LC) device 32 2-3-3. Bisector effect [2] 35 2-4. Optical vortex and orbital angular momentum 38 2-5. Optical vortex fabricated by inhomogeneous anisotropic media 41 2-6. Fresnel zones [58] 43 Chapter 3: Experimental preparations 45 3-1. Materials 45 3-1-1. Liquid Crystals - E7 45 3-1-2. Azo dye – Methyl Red (MR) 46 3-2. Fabrications of samples 47 3-2-1. Liquid crystal q-plate 47 3-2-2. Advanced liquid crystal q-plate (ALCQP) 48 3-2-3. Axially symmetric dye-doped liquid crystal (ASDDLC) Fresnel lens 48 Chapter 4: Modulation of shape and polarization of beam using a liquid crystal q-plate 51 4-1. Liquid crystal q-plate structures 52 4-2 Optical properties of liquid crystal q-plate 53 4-3 The analysis of modulated optical-field 56 Chapter 5: The advanced q-plate and analyzed by Michelson’s interference 60 5-1. The advanced liquid crystal q-plate structures 61 5-2. Optical properties of advanced liquid crystal q-plate 61 5-3. Analyzed by Michelson’s interference 64 5-4. The response time of advanced liquid crystal q-plate 67 Chapter 6 High-efficiency Fresnel lens fabricated by axially symmetric photo-alignment method 68 6-1. Single-side photo-realignment: fabrication of an ASTNLC sample 69 6-2. Double-side photo-realignment: Fabrication of an ASDDLC Fresnel lens 70 Chapter 7: Conclusions and future works 78 7-1. Conclusions 78 7-2. Future works 79 Reference 81

    [1] F. Fan, A. K. Srivastava, V. G. Chigrinov, and H. S. Kwok, “Switchable liquid crystal grating with sub millisecond response,” Appl. Phys. Lett. 100, 111105 (2012).
    [2] S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays, (Wiley, New York, 2001).
    [3] J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404-1406 (2011).
    [4] Y. Hiroyuki, T. Kenji, K. Takayuki, F. Akihiko, O. Masanori, “Alignment-to-polarization projection in dye-doped nematic liquid crystal microlasers,” Opt. Express 18, 12562 (2010).
    [5] E. Ouskova, Yu. Reznikov, S.V. Shiyanovskii, L. Su, J.L. West, O.V. Kuksenok, O. Francescangeli, and F. Simoni, “Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface,” Phys. Rev. E 64, 051709 (2001).
    [6] C. Sánchez, R. Cases, R. Alcalá, A. López, M. Quintanilla, L. Oriol, and M. Millaruelo, “Biphotonic holographic recording in a liquid crystalline cyanoazobenzene side-chain polymethacrylate. Polarization, intensity, and relief gratings,” J. Appl. Phys. 89, 5299 (2001).
    [7] F. Reinitzer, “Beiträge zur Kenntniss des Cholesterins,” Monatsh. Chem., 9, 421, (1888).
    [8] T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. Hermann, A. Anawati, J. Broeng, J. Li, S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857-5871 (2004).
    [9] P. G. de Gennes, “The Physics of Liquid Crystals” Oxford University Press (1993).
    [10] I. C. Khoo, “Liquid Crystals” 2th Ed., John Wiley & Sons, Inc., New Jersey (2007).
    [11] A. Yariv, “Optical Electronics in modern Communications” 5th Ed., Oxford University Press, New York (1997).
    [12] S. Chandraseker, F. R. S., “Liquid crystals”, Second edition, Cambridge University Press, Cambridge (1992).
    [13] I.-C. Khoo and S.-T. Wu, “Optics and nonlinear optics of liquid crystals,” Series in nonlinear optics ,World Scientific, NJ, (1993).
    [14] C. W. Ossen, Trans. Faraday Soc. 29, 883(1933).
    [15] H. Zocher, Trans. Faraday Soc. 29, 945(1933).
    [16] IUPAC, Compendium of Chemical Terminology, 2nd ed. (1997).
    [17] W. Y. Wong, T. M. Wong and H. Hiraoka, “Polymer segmental alignment in polarized pulsed laser-induced periodic surface structures,” Appl. Phys. A, 65, 519 (1997).
    [18] H. Hervel, W. Urbach and F. Rondelez , “Mass diffusion measurements in liquid crystals by a novel optical method,” J. Chem. Phys. 68, 2725 (1978).
    [19] D. Voloshchenko, A. Khyzhnyak, Y. Reznikov, and V. Reshetnyak, "Control of an Easy-Axis on Nematic-Polymer Interface by Light Action to Nematic Bulk," Jpn. J. Appl. Phys. 34, 566-571 (1995).
    [20] F. Simoni and O. Francescangeli, "Effects of light on molecular orientation of liquid crystals," J. Phys.: Condens. Matter 11, R439-R487 (1999).
    [21] E. Ouskova, Y. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli, and F. Simoni, "Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface," Physical Review E 64, 051709 (2001).
    [22] S.-Y. Huang, T.-C. Tung, C.-L. Ting, H.-C. Jau, M.-S. Li, H.-K. Hsu, and A. Y.-G. Fuh, "Polarization-dependent optical tuning of focal intensity of liquid crystal polymer microlens array," Appl Phys B-Lasers 104, 93-97 (2011).
    [23] Andy Y.-G. Fuh, C.-C. Chen, K.-T. Cheng, C.-K. Liu and W.-K. Chen, “Polarization-independent holographic gratings based on azo dye-doped polymer-dispersed liquid crystal films,” Appl. Optics 49, 275-280 (2010).
    [24] H.-C. Jau, K.-T. Cheng, T.-H. Lin, Y.-S. Lo, J.-Y. Chen, C.-W. Hsu and Andy Y.-G. Fuh, “Photo-rewritable flexible LCD using indium zinc oxide-polycarbonate substrates,” Appl. Opt. 50, 213-217 (2011).
    [25] I. Janossy, "Molecular Interpretation of the Absorption-Induced Optical Reorientation of Nematic Liquid-Crystals," Phys Rev E 49, 2957-2963 (1994).
    [26] I. Janossy, and T. Kosa, "Influence of Anthraquinone Dyes on Optical Reorientation of Nematic Liquid-Crystals," Opt Lett 17, 1183-1185 (1992).
    [27] W. M. Gibbons, P. J. Shannon S. T. Sun, and B. J. Swetln, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature, 351, 49-50 (1991).
    [28] W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shsnnon and S. T. Sun, Nature, “Continuous grey-scale image storage using optically aligned nematic liquid crystals,” 377, 43-46 (1995).
    [29] L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, "Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal," Opt. Express 15, 2900-2906 (2007).
    [30] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices”, Chapter 3, John Wiley & Sons, Inc. (2006).
    [31] M. Schadt and W. Helfrich,“Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal,” Appl. Phys. Lett., 18, 127 (1971).
    [32] Atiyah, M. F.,and MacDonald, I. G. “Introduction to Commutative Algebra”, Westview Press, (1969).
    [33] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A. 45, 8185-8189 (1992).
    [34] A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” A O P 3, 161-204 (2011).
    [35] V.-I. Basistiy, M.-S. Soskin, M.-V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604-612 (1995).
    [36] A. E. Siegman, Lasers (University Science Books, 1986).
    [37] H. Wang, S. Han, and M. I. Kolobov, “Quantum limits of super-resolution of optical sparse objects via sparsity constraint” Opt. Express 20, 23235-23252 (2012).
    [38] A. Jesacher, S. F¨urhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005).
    [39] G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pasko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448-5456 (2004).
    [40] A. Mair, A. Vaziri, G. Welhs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-315 (2001).
    [41] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, “Generation of hyperentangled photon pairs,” Phys. Rev. Lett. 95, 260501 (2005).
    [42] G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305-310 (2007).
    [43] L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007).
    [44] Keir C. Neuman and Steven M. Block, “Optical Trapping”, Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [45] A. Jesacher, S. F¨rhapter, S. Bernet, and M. Ritsch-Marte, ”Size selective trapping with optical cogwheel tweezers,” Opt. Express 12, 4129-4135 (2004).
    [46] S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, ”Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges,” Opt. Express 14, 535-541 (2006).
    [47] F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini and C. Barbieri “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97, 163903 (2006).
    [48] C. Maurer, A Jesacher, S. F¨urhapter, S. Bernet and M. Ritsch-Marte, ”Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [49] J. Yu, C. Zhou, W. Jia, A. Hu, W. Cao, J. Wu, and S. Wang “Three-dimensional Dammann vortex array with tunable topological charge,” Appl. Opt. 51, 2485-2495 (2012).
    [50] E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, ” Experimental generation and characterization of single-photon hybrid ququarts based on polarization and orbital angular momentum encoding,” Phys. Rev. A 81, 052317 (2010).
    [51] R. Steiger, S. Bernet, and M. Ritsch-Marte, “Mapping of phase singularities with spiral phase contrast microscopy,” Opt. Express 21, 16282-16289 (2013).
    [52] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321-327 (1994).
    [53] K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12, 3548-3553 (2004).
    [54] S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd “Integrated multi vector vortex beam generator,” Opt. Express 21, 16130-16141 (2013).
    [55] M. J. Padgett and L. Allen “Orbital angular momentum exchange in cylindrical-lens mode converters,” J. Opt. B: Quantum Semiclass. Opt. 4, S17-S19 (2002).
    [56] R. Bhandari “Polarization of light and topological phases” Physics Reports 281, 1-64 (1997).
    [57] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27, 1141-1143 (2002).
    [58] Grant R. Fowles “introduction to modern optics”, second edition, (1975).
    [59] C.-R. Lee, T.-L. Fu, K.-T. Cheng, T.-S. Mo, and A. Y.-G. Fuh, “Surface-assisted photoalignment in dye-doped liquid-crystal films,” Phys. Rev. E 69, 031704 (2004).
    [60] C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423-427 (2003).
    [61] S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338, 514-518 (1989).
    [62] C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8, 2998-3003 (2008).
    [63] R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier,“Manipulation and assembly of nanowireswith holographic optical traps, ” Opt. Express 13, 8906-8912 (2005).
    [64] F. Hajizadeh, and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551-559 (2010).
    [65] P. Srinivasan, M. K. Poutous, Z. A. Roth, Y. O. Yilmaz, R. C. Rumpf, and E. G. Johnson, “Spatial and spectral beam shaping with spacevariant guided mode resonance filters,” Opt. Express 17, 20365-20375, (2009).
    [66] Z. Tian, M. Nix, and S. S-H. Yam, ”Laser beam shaping using a single-mode fiber abrupt taper” Opt. Lett. 34, 229-231 (2009).
    [67] W. W. Simmons, G. W. Leppelmeier, and B. C. Johnson, “Optical Beam Shaping Devices Using Polarization Effects” Appl. Optics 13, 1629-1632 (1974).
    [68] S.-W. Ko, T.-H. Lin, Y.-H. Huang, H.-C. Jau, S.-C. Chu, Y.-Y. Chen, and Andy Y.-G. Fuh, “Electrical control of shape of laser beam using axially symmetric liquid crystal cells,” Appl. Optics 51, 1540-1545 (2012).
    [69] S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato1, “Tunable liquid crystal q-plates with arbitrary topological charge” Opt. Express 19, 4085-4090 (2011).
    [70] L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [71] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).
    [72] E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17, 18745-18759 (2009).
    [73] L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (2006).
    [74] L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [75] E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, and E. Santamato, “Polarization-controlled evolution of light transverse modes and associated pancharatnam geometric phase in orbital angular momentum,” Phys. Rev. A 81, 053813 (2010).
    [76] E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Optimal quantum cloning of orbital angular momentum photon qubits through hong-ou-mandel coalescence,” Nat. Photon. 3, 720-723 (2009).
    [77] S. Slussarenko, B. Piccirillo, V. Chigrinov, L. Marrucci, and E. Santamato, ” Liquid crystal spatial-mode converters for the orbital angular momentum of light” J. Opt. 15, 025406 (2013).
    [78] S. H. Tao, X. C. Yuan, J. Lin, and R. E. Burge, ”Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges,” Opt. Express 14, 535-541 (2006).
    [79] C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, ”Tuning the orbital angular momentum in optical vortex beams,” Opt. Express 14, 6604-6612 (2006).
    [80] F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh Criterion Limit with Optical Vortices,” Phys. Rev. Lett. 97, 163903 (2006).
    [81] C. Maurer, A Jesacher, S. F¨urhapter, S. Bernet, and M. Ritsch-Marte, ”Tailoring of arbitrary optical vector beams,” New J. Phys. 9, 78 (2007).
    [82] S. Franke-Arnold, J. Leach, M. J. Padgett, V. E. Lembessis, D. Ellinas, A. J. Wright, J. M. Girkin, P. O¨ hberg, and A. S. Arnold, “Optical ferris wheel for ultracold atoms,” Opt. Express 15, 8619-8625 (2007).
    [83] G. Molina-Terriza, J.P. Torres, and L. Torner, ”Twisted photons,” Nature Phys. 3, 305-310 (2007).
    [84] J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004), Chap. 4.
    [85] “Technical Computing with MATLAB,” The MathWorks, Inc, (2012).
    [86] K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5, 335-342 (2011).
    [87] W. Han, W. Cheng, and Q. Zhan, “Flattop focusing with full Poincaré beams under low numerical aperture illumination,” Opt. Lett. 36, 1605-1607 (2011).
    [88] W. Cheng, W. Han, and Q. Zhan, “Compact flattop laser beam shaper using vectorial vortex,” Appl. Opt. 52, 4608-4612 (2013).
    [89] Q. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10, 324-331 (2002).
    [90] K. J. Moh, X.-C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, “Surface plasmon resonance imaging of cell-substratecontacts with radially polarized beams,” Opt. Express 16, 20734-20741 (2008).
    [91] Q. Zhan and J. R. Leger, “Microellipsometer with Radial Symmetry,” Appl. Opt. 41, 4630-4637 (2002).
    [92] C.-S. Guo, Y. Zhang, Y.-J. Han, J.-P. Ding, and H.-T. Wang “Optical tweezers of programmable shape with transverse scattering forces” , Opt. Commun. 259, 449 (2006).
    [93] J. E. Curtis and D. G. Grier, “Modulated optical vortices” Opt. Lett. 28, 872 (2003).
    [94] Y.-H. Huang, S.-W. Ko, M.-S. Li, S.-C. Chu, and Andy Y.-G. Fuh “Modulation of shape and polarization of beam using a liquid crystal q-plate that is fabricated via photo-alignment” Opt. Express 21, 10954-10961 (2013).
    [95] Y.-Y. Tzeng, S.-W. Ke, C.-L. Ting, Andy Y.-G. Fuh, and T.-H. Lin “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16, 3768-3775 (2008).
    [96] T. Fujita, H. Nishihara and J. Koyama, “Fabrication of micro lenses using electron- beam lithography,” Opt. Lett. 6, 613-615 (1981).
    [97] J. Jahns and S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931-936 (1990).
    [98] Y.-H. Fan, H. Ren and S.-T. Wu, “Switchable Fresnel lens using polymer-stabilized liquid crystals,” Opt. Express 11, 3080-3086 (2003).
    [99] D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim and S.-D. Lee, “Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration,” Appl. Phys. Lett. 88, 203505-203507 (2006).
    [100] Stalder, M; Schadt, M “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948-1950 (1996).
    [101] Yung-Hsun Wu, Yi-Hsin Lin, Hongwen Ren, Xiangyi Nie, Ju-Hyun Lee, and Shin-Tson Wu “Axially-symmetric sheared polymer network liquid crystals,” Opt. Express 13, 4638-4644 (2005).
    [102] H. Ren, Y.-H. Lin, and S.-T. Wu “Linear to axial or radial polarization conversion using a liquid crystal gel,”Appl. Phys. Lett. 89, 051114 (2006).
    [103] R. Dorn, S. Quabis, and G. Leuchs,” Sharper Focus for a Radially Polarized Light Beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [104] T. Grosjean, D. Courjon, and C. Bainier,” Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976 (2007).
    [105] S. T. Wu “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt. 28, 48 (1989).

    下載圖示 校內:2019-03-12公開
    校外:2019-03-12公開
    QR CODE