| 研究生: |
李鎮廷 Li, Chen-Ting |
|---|---|
| 論文名稱: |
以叢集電腦求解大規模線性方程組 Solution of the Large-Scale Linear Equations by Using PC Cluster |
| 指導教授: |
黃吉川
Hwang, Chi-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | LU分解 、訊息傳遞介面 、叢集電腦 |
| 外文關鍵詞: | LU decomposition, Message Passing Interface (MPI), PC Cluster |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從公元前兩千多年到現在,方程組的求解陸續被人們討論著,隨著待求解的未知變數增加,問題的複雜度以及所耗的時間也越來越多,造成問題無法求解或是效率不高。然而,現今普遍用來運算的電腦科學軟體,例如MATLAB、OCTAVE等等,其效能及可計算的規模也不能完全解決在大尺度運算中會遇到的問題,若是線性方程組的解為數萬等級,則計算系統會超過負荷。
為了解決上述問題,本研究主要利用LU分解主元消去法,搭配了訊息傳遞介面(MPI)的高效能、大規模性以及可移植性等性質,先將方程組進行LU分解,再利用反向回代法求出線性方程組的解。除此之外,本研究所提出的方法可以支援跨核心以及跨機,若是硬體許可,無擴充限制的情況下,本方法所能求解的問題規模無上限。符合現今網路時代大數據求解之需求。而除了問題規模無限制之外,求解所需的執行時間,經比較之後,也已經超越了現今常用的運算軟體。因此本研究結合了不同運算方法,發展並建構出一套新的求解方式,提升了運算的效能以及效率。
The issue of solving equations has been discussed since two thousand years BC. Along with increasing unknown variables, the complexity of the problem and the solving time in-crease. However, scientific computation cannot be used to solve the problem completely, when it is so large-scale an operation that the loading of the system exceeds the limitation.
To solve the above problems, in this study, we use the Gaussian elimination with the Mes-sage Passing Interface(MPI), LU decompose equations firstly, and then use back-ward-substitution to obtain the solution of linear equations. In addition, the proposed method in this study supports large-scale parallelization across CPU cores and machine nodes, if the hardware resource allowed, the problems scale can be enlarged accordingly, meeting today's needs of big data in this Internet era. Moreover, we have compared the computing effectiveness and efficiency of our method with other computing software, showing better performance. Therefore, this study combines the different calculation methods, to develop and construct a new way of solving equations, enhancing the effec-tiveness and efficiency of operations.
[1] G. G. Joseph, The crest of the peacock: Non-European roots of mathematics: Princeton University Press, 2011.
[2] 梁宗巨, 數學歷史典故: 遼寧敎育出版社, 1992.
[3] 李繼閔, "九章算術及其劉徽注研究," 九章出版社, 臺北, 第 5-40 頁 & 第 301-342 頁, 1992.
[4] M. Minsky, Society of mind: Simon and Schuster, 1988.
[5] S. Lipschutz and M. Lipson, Schaum's outline of theory and problems of linear algebra: Erlangga, 2001.
[6] 張文力, 陳明宇, 馮聖中, and 樊建平, "並行 linpack 分析與優化探討," 中國科學院計算技術研究所第八屆電腦科學與技術研究生學術討論會, vol. 7, p. 13, 2004.
[7] 張文力, 陳明宇, and 樊建平, "HPL 測試性能模擬與預測," 電腦研究與發展, vol. 43, pp. 557-562, 2015.
[8] D. E. Keyes, A. Sameh, and V. Venkatakrishnan, Parallel numerical algorithms: Springer Publishing Company, Incorporated, 2013.
[9] I. N. Herstein, Topics in algebra: John Wiley & Sons, 2006.
[10] 紀坤, 陳建平, 石振國, and 劉維富, "矩陣三角分解分塊演算法的研究與實現," 電腦應用與軟體, vol. 27, pp. 72-74, 2010.
[11] M. T. Heath, E. Ng, and B. W. Peyton, "Parallel algorithms for sparse linear systems," SIAM review, vol. 33, pp. 420-460, 1991.
[12] W. Zhang, M. Chen, and J. Fan, "HPL performance prevision to intending system improvement," in Parallel and Distributed Processing and Applications, ed: Springer, 2005, pp. 777-782.
[13] B. Zhang, "Theory and method of numeric parallel computing," National defense industry press, Beijing, 1999.
[14] Goto, K., & Van De Geijn, R. (2008). High-performance implementation of the level-3 BLAS. ACM Transactions on Mathematical Software (TOMS), 35(1), 4.
[15] L. D. Fosdick, An introduction to high-performance scientific computing: MIT Press, 1996.
[16] Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A parallel programming standard for heterogeneous computing systems. Computing in science & engineering, 12(1-3), 66-73.
[17] 曹振南, "如何做 Linpack 測試及性能優化," Technical report, 中國科學院計算技術研究所, 2004.
[18] J. Dongarra, "The HPC challenge benchmark: a candidate for replacing linpack in the Top500?," in 2007 SPEC Benchmark Workshop, 2007.
[19] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance, portable implementation of the MPI message passing interface standard," Parallel computing, vol. 22, pp. 789-828, 1996.
[20] R. A. Horn and C. R. Johnson, Matrix analysis: Cambridge university press, 2012.
[21] Perot, J. B. (1993). An analysis of the fractional step method. Journal of Computational Physics, 108(1), 51-58.
[22] 陳權, "平行分子動力學應用於個人電腦叢集系統分析與效能研究," 成功大學工程科學系學位論文, pp. 1-108, 2009.
校內:2025-12-31公開