| 研究生: |
張健智 Chang, Chien-Chih |
|---|---|
| 論文名稱: |
奈米粒子表面之界面活性劑長度對於薄膜團聯式共聚物/奈米粒子複合材料結構的影響 Effect of ligand length on the structure of block copolymer/nanoparticle composite thin film |
| 指導教授: |
羅介聰
Lo, Chieh-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 金粒子 、團聯式共聚合物 、結構 、玻璃轉換溫度 、薄膜 |
| 外文關鍵詞: | gold nanoparticle, diblock copolymer, morphology, glass transition temperature, thin film |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以不同分子量之聚苯乙烯硫醇化合物(thiol terminated polystyrene, PSSH)對奈米金粒子(Au) 表面進行改質,再將改質後之金粒子與團聯式共聚合物poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP)製備成奈米複合薄膜。
由TEM及TGA分析發現,改質後之粒子粒徑隨著PSSH分子量之增加而上升。在複合物中,金粒子的添加使得PS-b-P2VP之Tg上升,但是摻合高濃度且較大粒徑之粒子時,由於粒子粒徑較大,複合材料所能容納之粒子減少,此時奈米粒子產生聚集,形成巨觀相分離,對複合材料之Tg不造成影響。
在薄膜中添加低粒子濃度時,摻合大粒徑與小粒徑之粒子,皆能夠得到具有規則性之薄膜表面結構,但是摻合使用大分子量PSSH所改質的粒子,且在較短的annealing時間,薄膜表面會出現垂直層狀結構;摻合小粒子,薄膜表面形態為平行柱狀。隨著annealing時間增加,薄膜表面出現許多金粒子,此為在annealing的過程中,部份金粒子會移動至空氣/共聚物界面,增加系統的熵。在高粒子濃度時,摻合大粒徑粒子之複合薄膜,經過長時間的annealing,表面會產生粒子聚集的巨觀相分離。金粒子的濃度和表面所改質的PSSH長度改變時,除了改變薄膜表面形態,也會改變共聚物溼潤於基材的能力。結果顯示由於奈米粒子會移動至高分子/基材的界面,因此粒子濃度的提升以及PSSH長度的增加,皆能夠增加共聚物潤溼於基材的能力。
將PS-b-P2VP/PSSH-Au摻合hPS,高分子鏈的移動速率大於未添加hPS時的移動速率。摻合低濃度的小粒徑之Au粒子,薄膜表面可形成垂直柱狀的結構,這是由於PS-b-P2VP中PS區塊的體積分率增加,Au粒子的添加降低團聯式共聚物之分離程度,且共聚物/基材表面有足夠的氯仿,降低分子鏈段與界面之間的能量差距形成中性界面。增加金粒子及hPS濃度,皆無法於薄膜表面得到垂直柱狀。這是由於金粒子和hPS濃度的增加,會導致團聯式共聚合物之分離程度下降,因此無法形成有序之結構。從OM圖發現hPS的加入,與添加改質後之金粒子相同,亦有效地增加共聚物溼潤於基材的能力。
Thin films of nanocomposites composed of polystyrene-b-poly(2 vinylpyridine) (PS-b-P2VP) and different molecular weights of thiol-terminated polystyrene (PSSH) tethered Au nanoparticles were investigated. It was obtained that the particle size increases with increasing molecular weight of PSSH. The Tg of PS-b-P2VP/ PSSH-Au nanocomposites shows a strong function of particle concentration and particle size and the addition of Au particles increases the Tg of block copolymer. However when PS-b-P2VP was mixed with large particles at high loading, macrophase separation of particles from the preferred domains of PS-b-P2VP occurs, causing the nearly identical Tg of composite to the neat copolymer.
We further investigated the effect of particles on the morphology of composite thin films during neutral solvent annealing. At low particle loading with short annealing time, a well ordered structure was obtained regardless of the size of particles. For large particles, composite thin film developed to a lamellar structure perpendicular to the substrate. In contrast, composite thin film with the addition of small particles formed a parallel cylinder structure. During annealing, particles tend to move the air/ polymer interface to increase the conformational entropy of the system. At high particle loading, composite thin film with large particles formed macrophase separation. The PS-b-P2VP/particle composite thins not only affect the surface morphology but also change the wetting ability of thin films. Results showed the use of the high particle loading and the high molecular weight of PSSH significantly improves the wetting of the thin films. This behavior is due to the Au particles diffusion to the interface between poymer and substrate.
The surface morphology of PS-b-P2VP/PSSH-Au/hPS composite thin films during chloroform vapor annealing was also studied. The incorporate of hPS into the nanocomposite enhances the diffusion of the system. The composite thin film with small Au particles and low concentration exhibit a perpendicularly cylindrical structure. This structure is due to the sequestering of hPS in the PS domains, that casuses an increase in the effective volume fraction of the PS domains, resulting in the order to order transition. In addition, the addition of Au particles and hPS reduces the degree of segregation. This behavior and the chloroform vapor treatment reduce the energy difference between the polymer and subrate that induced the change in orientation of the ordered domains. The perpendicularly cylindrical structure disappeared with slightly increasing Au particle and hPS concerntration. This is attributed to the significantly decreasing the degree of segregation. OM results revealed that the wetting ability was enhances with the addition of hPS. This phenomenon is consistent with the composite manipulated with Au nanoparticles.
1. F.S. Bates, Science, 1991, 251, 898
2. F.S. Bates and G.H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525
3. M.J. Fasolka and A.M. Mayes, Ann. Rev. Mater. Res., 2001, 31, 323
4. M.F. Schulz, A.K. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D.A. Hajduk and S.M. Gruner, Macromolecules, 1996, 29, 2857
5. M. Antonietti, S. Förster, M.A. Micha and S. Oestreich, Acta Polym., 1997, 48, 262
6. M.A. El-Sayed, Acc. Chem. Res., 2001, 34, 257
7. R. Shenhar, T.B. Norsten and V.M. Rotello, Adv. Mater., 2005, 17, 657
8. J.F. M. Brust, D. Bethell, D. J. Schiffrin and C. Kiely, J. Chem. Soc., Chem. Commun., 1995, 1655
9. A.C. Templeton, W.P. Wuelfing and R.W. Murray, Acc. Chem. Res., 1999, 33, 27
10. C.B. Murray, C.R. Kagan and M.G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545
11. T. Trindade, P. O'Brien and N.L. Pickett, Chem. Mater., 2001, 13, 3843
12. R.B. Grubbs, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4323
13. R. Glass, M. Möller and J.P. Spatz, Nanotechnology, 2003, 14, 1153
14. B.J. Kim, J. Bang, C.J. Hawker and E.J. Kramer, Macromolecules, 2006, 39, 4108
15. B.J. Kim, G.H. Fredrickson and E.J. Kramer, Macromolecules, 2008, 41, 436
16. J.J. Chiu, B.J. Kim, E.J. Kramer and D.J. Pine, J. Am. Chem. Soc., 2005, 127, 5036
17. J. Huh, V.V. Ginzburg and A.C. Balazs, Macromolecules, 2000, 33, 8085
18. R.B. Thompson, V.V. Ginzburg, M.W. Matsen and A.C. Balazs, Science, 2001, 292, 2469
19. R.B. Thompson, V.V. Ginzburg, M.W. Matsen and A.C. Balazs, Macromolecules, 2002, 35, 1060
20. H. Tanaka, H. Hasegawa and T. Hashimoto, Macromolecules, 1991, 24, 240
21. K. Kimishima, T. Hashimoto and C.D. Han, Macromolecules, 1995, 28, 3842
22. W. Meesiri, J. Menczel, U. Gaur and B. Wunderlich, J. Poly. Sci.: Polym. Phys. Edi., 1982, 20, 719
23. J.T.G. Fox and P.J. Flory, J. Appl. Phys., 1950, 21, 581
24. T.G. Fox, Bull. Am. Phys. Soc., 1956, 1, 123
25. J.P. Spatz, S. Sheiko and M. Möller, Adv. Mater., 1996, 8, 513
26. J. Zhao, S. Tian, Q. Wang, X. Liu, S. Jiang, X. Ji, L. An and B. Jiang, Eur. Phys. J. E, 2005, 16, 49
27. B.H. Sohn and S.H. Yun, Polymer, 2002, 43, 2507
28. P. Mansky, T.P. Russell, C.J. Hawker, M. Pitsikalis and J. Mays, Macromolecules, 1997, 30, 6810
29. T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C.M. Stafford and T.P. Russell, Polymer, 2001, 42, 9091
30. G. Kim and M. Libera, Macromolecules, 1998, 31, 2569
31. R.D. Peters, X.M. Yang, T.K. Kim, B.H. Sohn and P.F. Nealey, Langmuir, 2000, 16, 4625
32. G. Krausch and R. Magerle, Adv. Mater., 2002, 14, 1579
33. H. Wang, A.B. Djurisic, M.H. Xie, W.K. Chan and O. Kutsay, Thin Solid Films, 2005, 488, 329
34. J. Zhao, S. Jiang, X. Ji, L. An and B. Jiang, Polymer, 2005, 46, 6513
35. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, , Polymers at Interfaces. Chapman & Hall. London, 1993
36. C. Xu, K. Ohno, V. Ladmiral and R.J. Composto, Polymer, 2008, 49, 3568
37. H.K. Jeon and J.K. Kim, Macromolecules, 1998, 31, 9273
38. M.E. Vigild, Mesomophic Phase Behavior of Low Molar Mass PEP-PDMS Diblock Copolymers Synthesized by Anionic Polymerization. University of Copenhagen. 1997
39. K.R. Shull, E.J. Kramer, G. Hadziioannou and W. Tang, Macromolecules, 1990, 23, 4780
40. C.-H. Lin, Y.-C. Tung, J. Ruokolainen, R. Mezzenga and W.-C. Chen, Macromolecules, 2008, 41, 8759
41. M.U. Hisash Odani, Yukimasa Ogino, Michio Kurata, Bull. Inst. Chem. Res, 1985, 63, 332
42. H. Elbs and G. Krausch, Polymer, 2004, 45, 7935
43. K.J. Hanley and T.P. Lodge, Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3101
44. C.T. Lo, B. Lee, V.G. Pol, N.L.D. Rago, S. Seifert, R.E. Winans and P. Thiyagarajan, Macromolecules, 2007, 40, 8302
45. M.D. Whitmore and J. Noolandi, J. Chem. Phys., 1990, 93, 2946
46. X. Li, J. Peng, Y. Wen, D.H. Kim and W. Knoll, Polymer, 2007, 48, 2434
47. K.A. Barnes, A. Karim, J.F. Douglas, A.I. Nakatani, H. Gruell and E.J. Amis, Macromolecules, 2000, 33, 4177
48. M.A. Holmes, M.E. Mackay and R.K. Giunta, J. Nanopart. Res., 2007, 9, 753
49. A. Jayaraman and K.S. Schweizer, Macromolecules, 2008, 41, 9430
50. R.S. Krishnan, M.E. Mackay, C.J. Hawker and B. Van Horn, Langmuir, 2005, 21, 5770
51. Q. Lan, L.F. Francis and F.S. Bates, J. Polym. Sci., Part B: Polym. Phys., 2007, 45, 2284
52. X. Li, Y. Han and L. An, Polymer, 2003, 44, 5833
53. H. Luo and D. Gersappe, Macromolecules, 2004, 37, 5792
54. S. Sharma, M.H. Rafailovich, D. Peiffer and J. Sokolov, Nano Lett., 2001, 1, 511
55. J.N. Kizhakkedathu, K.R. Kumar, D. Goodman and D.E. Brooks, Polymer, 2004, 45, 7471
56. S. Santer and J. Rühe, Polymer, 2004, 45, 8279
57. 張育誠,奈米粒子表面之界面活性劑長度對奈米鈀粒子/團聯式共聚合物摻合系統型態的影響,國立成功大學化學工程學系碩博士班,2008
58. B.J. Kim, G.H. Fredrickson, C.J. Hawker and E.J. Kramer, Langmuir, 2007, 23, 7804
59. A. Jayaraman and K.S. Schweizer, J. Chem. Phys., 2008, 128, 164904
60. T. Çaykara, S. Demirci, M.S. Eroglu and O. Güven, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 426
61. R.A. Erb, J. Phys. Chem., 1968, 72, 2412
62. J. Zhao, S. Jiang, X. Ji, L. An and B. Jiang, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 3496