簡易檢索 / 詳目顯示

研究生: 張健智
Chang, Chien-Chih
論文名稱: 奈米粒子表面之界面活性劑長度對於薄膜團聯式共聚物/奈米粒子複合材料結構的影響
Effect of ligand length on the structure of block copolymer/nanoparticle composite thin film
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 113
中文關鍵詞: 金粒子團聯式共聚合物結構玻璃轉換溫度薄膜
外文關鍵詞: gold nanoparticle, diblock copolymer, morphology, glass transition temperature, thin film
相關次數: 點閱:76下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以不同分子量之聚苯乙烯硫醇化合物(thiol terminated polystyrene, PSSH)對奈米金粒子(Au) 表面進行改質,再將改質後之金粒子與團聯式共聚合物poly(styrene-b-2-vinyl pyridine) (PS-b-P2VP)製備成奈米複合薄膜。
    由TEM及TGA分析發現,改質後之粒子粒徑隨著PSSH分子量之增加而上升。在複合物中,金粒子的添加使得PS-b-P2VP之Tg上升,但是摻合高濃度且較大粒徑之粒子時,由於粒子粒徑較大,複合材料所能容納之粒子減少,此時奈米粒子產生聚集,形成巨觀相分離,對複合材料之Tg不造成影響。
    在薄膜中添加低粒子濃度時,摻合大粒徑與小粒徑之粒子,皆能夠得到具有規則性之薄膜表面結構,但是摻合使用大分子量PSSH所改質的粒子,且在較短的annealing時間,薄膜表面會出現垂直層狀結構;摻合小粒子,薄膜表面形態為平行柱狀。隨著annealing時間增加,薄膜表面出現許多金粒子,此為在annealing的過程中,部份金粒子會移動至空氣/共聚物界面,增加系統的熵。在高粒子濃度時,摻合大粒徑粒子之複合薄膜,經過長時間的annealing,表面會產生粒子聚集的巨觀相分離。金粒子的濃度和表面所改質的PSSH長度改變時,除了改變薄膜表面形態,也會改變共聚物溼潤於基材的能力。結果顯示由於奈米粒子會移動至高分子/基材的界面,因此粒子濃度的提升以及PSSH長度的增加,皆能夠增加共聚物潤溼於基材的能力。
    將PS-b-P2VP/PSSH-Au摻合hPS,高分子鏈的移動速率大於未添加hPS時的移動速率。摻合低濃度的小粒徑之Au粒子,薄膜表面可形成垂直柱狀的結構,這是由於PS-b-P2VP中PS區塊的體積分率增加,Au粒子的添加降低團聯式共聚物之分離程度,且共聚物/基材表面有足夠的氯仿,降低分子鏈段與界面之間的能量差距形成中性界面。增加金粒子及hPS濃度,皆無法於薄膜表面得到垂直柱狀。這是由於金粒子和hPS濃度的增加,會導致團聯式共聚合物之分離程度下降,因此無法形成有序之結構。從OM圖發現hPS的加入,與添加改質後之金粒子相同,亦有效地增加共聚物溼潤於基材的能力。

    Thin films of nanocomposites composed of polystyrene-b-poly(2 vinylpyridine) (PS-b-P2VP) and different molecular weights of thiol-terminated polystyrene (PSSH) tethered Au nanoparticles were investigated. It was obtained that the particle size increases with increasing molecular weight of PSSH. The Tg of PS-b-P2VP/ PSSH-Au nanocomposites shows a strong function of particle concentration and particle size and the addition of Au particles increases the Tg of block copolymer. However when PS-b-P2VP was mixed with large particles at high loading, macrophase separation of particles from the preferred domains of PS-b-P2VP occurs, causing the nearly identical Tg of composite to the neat copolymer.
    We further investigated the effect of particles on the morphology of composite thin films during neutral solvent annealing. At low particle loading with short annealing time, a well ordered structure was obtained regardless of the size of particles. For large particles, composite thin film developed to a lamellar structure perpendicular to the substrate. In contrast, composite thin film with the addition of small particles formed a parallel cylinder structure. During annealing, particles tend to move the air/ polymer interface to increase the conformational entropy of the system. At high particle loading, composite thin film with large particles formed macrophase separation. The PS-b-P2VP/particle composite thins not only affect the surface morphology but also change the wetting ability of thin films. Results showed the use of the high particle loading and the high molecular weight of PSSH significantly improves the wetting of the thin films. This behavior is due to the Au particles diffusion to the interface between poymer and substrate.
    The surface morphology of PS-b-P2VP/PSSH-Au/hPS composite thin films during chloroform vapor annealing was also studied. The incorporate of hPS into the nanocomposite enhances the diffusion of the system. The composite thin film with small Au particles and low concentration exhibit a perpendicularly cylindrical structure. This structure is due to the sequestering of hPS in the PS domains, that casuses an increase in the effective volume fraction of the PS domains, resulting in the order to order transition. In addition, the addition of Au particles and hPS reduces the degree of segregation. This behavior and the chloroform vapor treatment reduce the energy difference between the polymer and subrate that induced the change in orientation of the ordered domains. The perpendicularly cylindrical structure disappeared with slightly increasing Au particle and hPS concerntration. This is attributed to the significantly decreasing the degree of segregation. OM results revealed that the wetting ability was enhances with the addition of hPS. This phenomenon is consistent with the composite manipulated with Au nanoparticles.

    摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 團聯式共聚合物的微相形態 4 2.2 有機-無機混成系統 7 2.3 無機粒子在複合材料中的分佈 10 2.4 無機粒子誘發團聯式共聚合物之形態變化 15 2.5 無機粒子對團聯式共聚合物玻璃轉換行為的影響 18 2.6 團聯式共聚合物薄膜 21 2.6.1 團聯式共聚物薄膜之特性 21 2.6.2 界面對於團聯式共聚合物薄膜之影響 22 2.6.3 薄膜厚度對於團聯式共聚合物形態之影響 24 2.6.4 Solvent annealing對薄膜結構發展的影響 26 第三章 實驗內容 28 3.1 實驗藥品 28 3.2 實驗儀器 30 3.3 實驗步驟 31 3.3.1 金粒子表面改質 31 3.3.2 製備雙團聯式共聚合物/金奈米粒子複合薄膜 33 3.4 分析方法 35 3.4.1 穿透式電子顯微鏡 35 3.4.2 原子力顯微鏡 37 3.4.3 熱重分析儀 39 3.4.4 微差熱掃描卡計 42 3.4.5 接觸角量測儀 44 第四章 結果與討論 47 4.1 金奈米粒子表面分析 47 4.2 PS-b-P2VP/PSSH-Au混成材料之熱分析 52 4.3 奈米複合薄膜之表面形態分析 57 4.3.1 PS-b-P2VP薄膜 57 4.3.2 Annealing時間對於複合薄膜表面形態的影響 60 4.3.3 粒子濃度對薄膜表面形態的影響 64 4.3.4 PSSH長度對薄膜表面形態的影響 72 4.4 PS-b-PVP/PSSH-Au之接觸角實驗 87 4.5 均聚物對PS-b-P2VP/PSSH-Au形態的影響 93 結論 108 參考文獻 110

    1. F.S. Bates, Science, 1991, 251, 898
    2. F.S. Bates and G.H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525
    3. M.J. Fasolka and A.M. Mayes, Ann. Rev. Mater. Res., 2001, 31, 323
    4. M.F. Schulz, A.K. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D.A. Hajduk and S.M. Gruner, Macromolecules, 1996, 29, 2857
    5. M. Antonietti, S. Förster, M.A. Micha and S. Oestreich, Acta Polym., 1997, 48, 262
    6. M.A. El-Sayed, Acc. Chem. Res., 2001, 34, 257
    7. R. Shenhar, T.B. Norsten and V.M. Rotello, Adv. Mater., 2005, 17, 657
    8. J.F. M. Brust, D. Bethell, D. J. Schiffrin and C. Kiely, J. Chem. Soc., Chem. Commun., 1995, 1655
    9. A.C. Templeton, W.P. Wuelfing and R.W. Murray, Acc. Chem. Res., 1999, 33, 27
    10. C.B. Murray, C.R. Kagan and M.G. Bawendi, Annu. Rev. Mater. Sci., 2000, 30, 545
    11. T. Trindade, P. O'Brien and N.L. Pickett, Chem. Mater., 2001, 13, 3843
    12. R.B. Grubbs, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4323
    13. R. Glass, M. Möller and J.P. Spatz, Nanotechnology, 2003, 14, 1153
    14. B.J. Kim, J. Bang, C.J. Hawker and E.J. Kramer, Macromolecules, 2006, 39, 4108
    15. B.J. Kim, G.H. Fredrickson and E.J. Kramer, Macromolecules, 2008, 41, 436
    16. J.J. Chiu, B.J. Kim, E.J. Kramer and D.J. Pine, J. Am. Chem. Soc., 2005, 127, 5036
    17. J. Huh, V.V. Ginzburg and A.C. Balazs, Macromolecules, 2000, 33, 8085
    18. R.B. Thompson, V.V. Ginzburg, M.W. Matsen and A.C. Balazs, Science, 2001, 292, 2469
    19. R.B. Thompson, V.V. Ginzburg, M.W. Matsen and A.C. Balazs, Macromolecules, 2002, 35, 1060
    20. H. Tanaka, H. Hasegawa and T. Hashimoto, Macromolecules, 1991, 24, 240
    21. K. Kimishima, T. Hashimoto and C.D. Han, Macromolecules, 1995, 28, 3842
    22. W. Meesiri, J. Menczel, U. Gaur and B. Wunderlich, J. Poly. Sci.: Polym. Phys. Edi., 1982, 20, 719
    23. J.T.G. Fox and P.J. Flory, J. Appl. Phys., 1950, 21, 581
    24. T.G. Fox, Bull. Am. Phys. Soc., 1956, 1, 123
    25. J.P. Spatz, S. Sheiko and M. Möller, Adv. Mater., 1996, 8, 513
    26. J. Zhao, S. Tian, Q. Wang, X. Liu, S. Jiang, X. Ji, L. An and B. Jiang, Eur. Phys. J. E, 2005, 16, 49
    27. B.H. Sohn and S.H. Yun, Polymer, 2002, 43, 2507
    28. P. Mansky, T.P. Russell, C.J. Hawker, M. Pitsikalis and J. Mays, Macromolecules, 1997, 30, 6810
    29. T. Xu, H.-C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C.M. Stafford and T.P. Russell, Polymer, 2001, 42, 9091
    30. G. Kim and M. Libera, Macromolecules, 1998, 31, 2569
    31. R.D. Peters, X.M. Yang, T.K. Kim, B.H. Sohn and P.F. Nealey, Langmuir, 2000, 16, 4625
    32. G. Krausch and R. Magerle, Adv. Mater., 2002, 14, 1579
    33. H. Wang, A.B. Djurisic, M.H. Xie, W.K. Chan and O. Kutsay, Thin Solid Films, 2005, 488, 329
    34. J. Zhao, S. Jiang, X. Ji, L. An and B. Jiang, Polymer, 2005, 46, 6513
    35. G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove, B. Vincent, , Polymers at Interfaces. Chapman & Hall. London, 1993
    36. C. Xu, K. Ohno, V. Ladmiral and R.J. Composto, Polymer, 2008, 49, 3568
    37. H.K. Jeon and J.K. Kim, Macromolecules, 1998, 31, 9273
    38. M.E. Vigild, Mesomophic Phase Behavior of Low Molar Mass PEP-PDMS Diblock Copolymers Synthesized by Anionic Polymerization. University of Copenhagen. 1997
    39. K.R. Shull, E.J. Kramer, G. Hadziioannou and W. Tang, Macromolecules, 1990, 23, 4780
    40. C.-H. Lin, Y.-C. Tung, J. Ruokolainen, R. Mezzenga and W.-C. Chen, Macromolecules, 2008, 41, 8759
    41. M.U. Hisash Odani, Yukimasa Ogino, Michio Kurata, Bull. Inst. Chem. Res, 1985, 63, 332
    42. H. Elbs and G. Krausch, Polymer, 2004, 45, 7935
    43. K.J. Hanley and T.P. Lodge, Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 3101
    44. C.T. Lo, B. Lee, V.G. Pol, N.L.D. Rago, S. Seifert, R.E. Winans and P. Thiyagarajan, Macromolecules, 2007, 40, 8302
    45. M.D. Whitmore and J. Noolandi, J. Chem. Phys., 1990, 93, 2946
    46. X. Li, J. Peng, Y. Wen, D.H. Kim and W. Knoll, Polymer, 2007, 48, 2434
    47. K.A. Barnes, A. Karim, J.F. Douglas, A.I. Nakatani, H. Gruell and E.J. Amis, Macromolecules, 2000, 33, 4177
    48. M.A. Holmes, M.E. Mackay and R.K. Giunta, J. Nanopart. Res., 2007, 9, 753
    49. A. Jayaraman and K.S. Schweizer, Macromolecules, 2008, 41, 9430
    50. R.S. Krishnan, M.E. Mackay, C.J. Hawker and B. Van Horn, Langmuir, 2005, 21, 5770
    51. Q. Lan, L.F. Francis and F.S. Bates, J. Polym. Sci., Part B: Polym. Phys., 2007, 45, 2284
    52. X. Li, Y. Han and L. An, Polymer, 2003, 44, 5833
    53. H. Luo and D. Gersappe, Macromolecules, 2004, 37, 5792
    54. S. Sharma, M.H. Rafailovich, D. Peiffer and J. Sokolov, Nano Lett., 2001, 1, 511
    55. J.N. Kizhakkedathu, K.R. Kumar, D. Goodman and D.E. Brooks, Polymer, 2004, 45, 7471
    56. S. Santer and J. Rühe, Polymer, 2004, 45, 8279
    57. 張育誠,奈米粒子表面之界面活性劑長度對奈米鈀粒子/團聯式共聚合物摻合系統型態的影響,國立成功大學化學工程學系碩博士班,2008
    58. B.J. Kim, G.H. Fredrickson, C.J. Hawker and E.J. Kramer, Langmuir, 2007, 23, 7804
    59. A. Jayaraman and K.S. Schweizer, J. Chem. Phys., 2008, 128, 164904
    60. T. Çaykara, S. Demirci, M.S. Eroglu and O. Güven, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 426
    61. R.A. Erb, J. Phys. Chem., 1968, 72, 2412
    62. J. Zhao, S. Jiang, X. Ji, L. An and B. Jiang, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 3496

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE