| 研究生: |
黃秀娟 Huang, Hsiu-chuan |
|---|---|
| 論文名稱: |
變分法與橢圓型方程及迭代法與色散型方程 Variational Methods for Elliptic Equations and Iterative Methods for Dirac-Klein-Gordon Equations |
| 指導教授: |
吳宗芳
Wu, Tsung-fang 方永富 Fang, Yuang-fu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 187 |
| 中文關鍵詞: | 固定點定理 、零核結構的估計 、Nehari 流形 、Dirac-Klein-Gordon 方程 、雙線性估計 、變號一次的解 、半線性橢圓型方程 |
| 外文關鍵詞: | semilinear elliptic equation, Nehari manifold, 2-nodal solution, bilinear estimate, Dirac-Klein-Gordon equation, null-form estimate, fixed-point theorem |
| 相關次數: | 點閱:203 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文分成兩大主題,第一部份研究橢圓型方程在挖洞的有限柱體上的多解性,我們利用能量不太高的 Nehari 流形,當我們把柱體拉長時,可分解成能量分別集中在洞的上下部份,彼此不相交兩子流形;分別建立四種找變號函數最低能量的極值問題,再利用映射的次數 (mapping degree) 及 變形定理 (deformation theorem) 得到上述極值問題的最小值,也就是會變號一次的解 (2-nodal solution)。
第二部份研究Dirac-Klein-Gordon 方程解的存在性,我們建立一些估計,包括線性、雙線性及零核結構的估計,利用這些估計及迭代法,得到 Dirac-Klein-Gordon 方程在電荷類空間上解短時間的存在性、唯一性,利用電荷保守律及估計,得出解可在任何時間存在。
In this thesis, we investigate two different types partial differential equations one is an elliptic type and the other is dispersive type (or hyperbolic type). We take different approaches to these two equations one is a variational method and the other is an iterative method.
In part one: we study the multiplicity and the existence of the solutions of the superlinear subcritical elliptic problem. We use the decomposition of the filtration of the Nehari manifold via the variation of domain shape to prove that the semilinear elliptic equation in a large enough finite strip with a hole has at least four 2-nodal solutions which with precisely 2 nodal domains. Futhermore, we can decribe the bump location of these solutions.
In part two: We establish local and global existence results for Dirac-Klein-Gordon equations in one space dimension in the charge class space, employing a null form estimate, a bilinear estimate and a fixed point argument.
Part I :
[1] R.A. Adams,“ Sobolev space”, Academic Press, New York, 1975
[2] A. Ambrosetti, P.H. Rabinowitz, “Dual variational methods in critical point theory and applications ”’, J. Funct. Anal.14 (1973)349-381.
[3] T. Bartsch, “Critical point theory in partially ordered Hilbert spaces”, J. Funct. Anal. 186 (2001) 117-152.
[4] T. Bartsch, T. Weth, “Three nodal solutions of singularly perturbed elliptic equations on domains without topology”, Ann. Inst.H. Poincar′a Anal. Non Lin′eaire 22 (2005) 259-281.
[5] V. Benci, G. Cerami, “Positive solutions of some nonlinear elliptic equations in exterior domain”, Arch. Ration.Mech. Anal.99 (1987)283-300.
[6] H. Berestycki, P.L. Lions, “Nonlinear scalar field equations. I. Existence of ground state”, Arch. Ration. Mech. Anal. 82 (1983) 313-345.77
[7] H. Br′ezis and E.H. Lieb, “A relation between pointwise convergence of functions and convergence of functionals”, Proc. Amer Math.Soc.,88 (1983), 486-490 .
[8] J. Byeon, “ Existence of large positive solutions of some nonliear elliptic e quations on singularly perturbed domains”, Commun. PDEs 22 (1997) 1731-1769.
[9] A. Castro, M. Clapp, “The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain”, Nonlinearity 16 (2003) 579-590.
[10] K.J. Chen, H.C. Wang,“ A necessary and sufficient condition for Palais-Smale conditions”, SIAM J. Math. Anal.31(1999) 154-165.
[11] M. Clapp, T. Weth, “Minimal nodal solutions of the pure critical exponent problem on a symmetric domain”, Calc. Var. Partial Differential Equations 21 (2004) 1-14.
[12] E.N. Dancer, “ The effectof domain shape on the number of positive solution of certain nonlinear equations”, J. of Differential Equations 74 (1988) 120-156.
[13] M. Del Pino, P.L. Felmer,“ Local mountain passes for semilinear elliptic problems in unbounded domains”, Calc. Var. Partial Differential Equations 4 (1996) 121-137.
[14] M. Del Pino, P.L. Felmer, “Least energy solutions for elliptic equations in unbounded domains”, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996) 34 195-208.78
[15] M.J. Esteban, P.L. Lions,“ Existence and non-existence results for semilinear elliptic problems in unbounded domains”, Proc. Roy.Soc. Edinburgh Sect. A 93 (1982) 1-12.
[16] M.F. Furtado,“ A relation between the domain topology and the number of minimal nodal solutions for a quasilinear elliptic problem”,
Nonlinear Anal. TMA 62 (2005) 615-628.
[17] M.F. Furtado, “A note on the number of nodal solutions of an elliptic equation with symmetry”, Appl. Math. Lett. 19 (2006) 326-331.
[18] D. Gilbarg and N.S. Trudinger, “ Elliptic Partial Differential Equations of Second order”, Springer-Verlag, New York, 1983.
[19] B.Gidas, W.M. Ni and L. Nirenberg, “ Symmetry and related properties via the maximum principle”, Comm. Math. Phys. 68 (1978)209-243.
[20] H.C. Huang, T.F. Wu,“ Four 2-nodal solutions for a semilinear elliptic equation in a finite strip with a hole”, J. Math. Anal. Appl.
[21] K. Kurata, M. Shibata, K. Tada, “Existence of positive solutions for some nonlinear elliptic equations on unbounded domains with cylindrical ends:, Nonlinear Anal. TMA 55 (2003) 83-101.
[22] W.C. Lien, S.Y. Tzeng, H.C. Wang, “Existence of solutions of semilinear elliptic problems in unbounded domains”, Differ. Integral Equ. 6 (1993) 1281-1298.79
[23] Robert C.Mcowen, “ Partial Differential Equations - methods and Applications” , 2nd-ed. Prentice Hall, 2003
[24] E. M‥uller-Pfeiffer, “ On the number of nodal domains for eigenfunctions of elliptic differential operators”, J. London Math. Soc.(2) 31 (1985) 91-100.
[25] E.S. Noussair, J. Wei, “ On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems”, Indiana Univ. Math. J. 46 (1997) 1255-1271.
[26] P.H. Rabinowitz,“Minimax methods in critical point theorey with applications to differential equations”, Regional Conference Series in Mathematics, A.M.S., 1986
[27] C.A. Struwe,“Variational methods”, Spring-Verlag, Bertin-Heidelberg,2nd-ed, 1996
[28] M.E.Taylor,“ Partial differential Equations I’ Basic Theory’,Spring-Verlag New York.Inc. 1996
[29] H.C. Wang,“Palais-Smale approaches to semilinear elliptic equations in unbounded domains, Eletronic Jounal of Differential Equations,Monograph 06 2004
[30] H.C. Wang, T.F. Wu, “Symmetry breaking in a bounded symmetric domain”, NoDEA Nonlinear Differential Equations Appl. 11(2004) 361-377.
[31] Z.Q. Wang,“ On a superlinear elliptic equation”, Ann. Inst. H.Poincar`e Anal. Non Lin′eaire 8 (1991) 43-57.80
[32] M. Willem, “Minimax Theorems”, Birkhauser Verlag, Boston,1996.
[33] T.F. Wu,“ Multiplicity of single-bump solutions for semilinear elliptic equations in multi-bump domains”, Nonlinear Anal. TMA59 (2004) 973-992
[34] T.F.Wu , “Three positive solutions for nonlinear elliptic equations in a finite strip with a hole”, J. Math. Anal. Appl. 299 (2004)285-299
[35] T.F.Wu and H.C. Huang, “Four 2-nodal solutions for a semiliner elliptic equation in a finite strip with a hole”, J. Math. Anal. Appl.328 (2007) 567-576
[36] E. Zeidler, “Nonlinear Functional Analysis and it Applications I,Fixed-point Theorems”, Springer, New York, 1986.81
Part II
[1] P. D’Ancona, D. Foschi, and S. Selberg; Null structure and Almost Optimal Local Regularity of the Dirac-Klein-Gordon system, Journal of EMS (2007) no. 9, 877-899.
[2] P. D’Ancona, D. Foschi, and S. Selberg; Local Well-posedness below the Charge Norm for the Dirac-Klein-Gordon system in two space dimensions, Journal of Hyperbolic Differntial Equations (2007), no. 2, 295-330
[3] A. Bachelot; Probl′em de cauchy des syste′emes hyperboliques semilin ′eaires, Ann. Inst. H. Poincar′e Anal. Non Lin′eire 1 (1984), no.6, 453-478.
[4] M. Beals; Self-Spreading and strength of Singularities for solutions to semilinear wave equations, Annals of Math 118 (1983), 187-214.
[5] R. Beals and M. Bezard; Low regularity local solutions for field equations, Comm. Partial Differential Equations 21 (1996), no.1-2, 79-124.182
[6] P. Bechouche, N. J. Mauser, and S. Selberg; On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit,Journal of Hyperbolic Diff. Equations 2(2005), no. 1, 129-182.
[7] J. Bergh, J. L‥afstr‥aom; Interpolation spaces, Springer-Verlag, Berlin, 1976
[8] J. BourgainFourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Parts I, II,Geometric and Funct. Anal. 3 (1993), 107-156,
[9] J. Bourgain Invariant Measures for NLS in Infinite Volume Commun. Math. Phys 210 ( 2000) , 605-620.
[10] N. Bournaveas; Local existence of energy class solutions for the Dirac-Klein-Gordon equations, Comm. Partial Differential Equations 24 (1999), no. 7-8, 1167-1193.
[11] N. Bournaveas; A new proof of global existence for the Dirac-Klein-Gordon equations in one space dimension , J. Funct. Anal.173 ( 2000) , 203-213.
[12] N. Bournaveas and D. Gibbeson; Low regularity global solutions of the Dirac-Klein-Gordon equations in one space dimension, Differential and Integral Equations 19 (2), Page: 211-222.
[13] N. Bournaveas and D. Gibbeson; Global charge class solutions of the Dirac-Klein-Gordon equations in one space dimension, Differential and Integral Equations 19 (9), Page: 1001-1018.183
[14] J.M. Chadam; Global solutions of the cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space dimension, J.Functional Analysis 13 (1973), 173-184.
[15] J. Chadam and R. Glassey On Certain Global Solutions of the Cauchy Problem for the (Classical) Coupled Klein-Gordon-Dirac equations in one and three Space Dimensions , Arch. Rational Mech. Anal. 54 (1974) , 223-237.
[16] Yung-fu Fang Local Existence for Semilinear Wave Equations and Applications to Yang-Mills Equations Ph.D dissertation, 1996 University of Maryland
[17] Yung-fu Fang A Direct Proof of Global Existence for the Dirac-Klein-Gordon Equations in One Space Dimension Taiwanese J.Math. 8 ( 2004) , 33-41.
[18] Yung-fu Fang On the Dirac-Klein-Gordon Eqautions in One Space Dimension Differential and Integral Equations 17 ( 2004) , 1321-1346.
[19] Yung-fu Fang Low Regularity Solutions for the Dirac-Klein Equations in One Space Dimension Electronic J. Diff. Equations 2004(2004) , 1-19.
[20] Yung-fu Fang and Manoussos Grillakis Existence and Uniqueness for Boussinesq type Equations on a Circle Comm. PDE 21 (1996),1253-1277.184
[21] Y. F. Fang and M. Grillakis; On the Dirac-Klein-Gordon equations in three space dimensions, Comm. Partial Differential Equations 30 (2005), no. 4-6, 783-812.
[22] D. Foschi and S. Klainerman; Homogeneous L2 Bilinear estimates for wave equations, Ann. Scient. ENS 4e series 23 (2000), 211-274.
[23] R. T. Glassey and W. A. Strauss; Conservation laws for the classical Maxwell-Dirac and Klein-Gordon- Dirac equations, J. Math.Phys. 20 (1979), no. 3, 454-458
[24] S. Klainerman and S. Selberg; Bilinear estimates and applications to non-linear wave equations,Comm. Contemp. Math. 4(2002), no.2, 223-295.
[25] S. Klainerman and M. Machedon; Space-time estimates for null forms and the local existance theorem, Comm. Pure Appl. Math. 46 (1993), no. 9, 1221-1268.
[26] S. Klainerman and M. Machedon; Remark on Strichartz type inequalities,Int. Math. Res. Not., no. 5 (1996), 201?220
[27] Sergej Kuksin; Infinite-Dimensional Symplectic Capacities and a Squeezing Theorem for Hamiltonian PDE’s Commun. Math. Phys 167 (1995), 531-552.
[28] S.Machihara; The Cauchy problem for the 1d Dirac-klein-gordon system, to appear in NoDEA.
[29] H.Pecher,Low regularity well-posedness for the one-dimensional Dirac-klein-gordon system,185
[30] G. Ponce and T. C. Sideris; Local regularity of nonlinear wave equations in three space dimensions , Comm. Partial Differential Equations 18 (1993), no. 1-2, 169-177.
[31] J. Rauch, M. Reed; Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension, Duke Math. J.,49(1982), 397-475.
[32] J.J,Sakurai, Advanced Quantum Mechanics
[33] S. Selberg; Multilinear spacetime estimates and applications to lcal existance theory for nonlinear wave equations , Ph.D. thesis, Princeton University, 1999.
[34] S. Selberg; Global well-posedness below the charge norm for the Dirac-Klein-Gordon system in one space dimension, IMRN (2007).
[35] S. Selberg and A. Tesfahun; Low regularity well-posedness of the Dirac-Klein-Gordon system in one space dimension, To appear in Commun. Contemp. Math.
[36] I.E. Segal, Nonlinear semigroups, Ann. of Math. (2) 78(1963),339-364.
[37] Christopher D. Sogge; Fourier integrals in classical analysis, Cambridge tracts in mathematics 105, Cambridge univesity press.
[38] Elias M. Stein; Harmonic Analysis: real-variable methods, orthogonality, and oscillatory integrals Princeton University Press.1993,186
[39] Michael E. Taylor Partial differential Equations I Basic Theory Applied Mathematical Science 115. Springer
[40] Terence Tao, Nonlinear dispersive equations: local and global analysis
[41] Ioan Bejenaru and Terence Tao, Sharp well-posedness and illposedness results for a quadratic non-linear Schr‥odinger equation , Journal of Functional Analysis 233 (2006), 228-259.
[42] Y. Zheng ; Regularity of weak solutions to a two-dimensional modified Dirac-Klein-Gordon system of equations Commun. Math.
Phys. 151 (1993), 67-87.187