簡易檢索 / 詳目顯示

研究生: 陳邦維
Chen, Pang-Wei
論文名稱: 發展以液相層析串聯式質譜為基礎的生物體液蛋白質體分析系統並應用它來評估油煙暴露對大鼠肺沖提液蛋白質體之影響
Development of an LC-MS/MS-based system for the proteomic analysis of biological fluids and its application in assessing the effect of fuming oil exposure on the BALF proteome of rat
指導教授: 廖寶琦
Liao, Pao-Chi
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 體液蛋白質體質譜大鼠油煙作業環境暴露液相層析肺沖堤
外文關鍵詞: proteomics, fuming oil-releasing environment, bronchoalveolar lavage fluid (BALF), protein identification, body fluids, proteome, LC-MS/MS
相關次數: 點閱:109下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   生物體液,包含了體液(body fluid),泛指身體分泌的液體,包括血清、尿液、腦脊液…等,另一種形式則是以外來液體沖堤體腔或特定器官觀察其表面成份的組成,生物體液代表著不同器官、系統或是體腔的特徵,所以常運用至病理上的觀察,尤其以體液中的蛋白質組成除了可當作診斷的依據,對於病理的機制亦是重要的參考。
      而蛋白質體學(proteomics)的技術即是針對蛋白質混合物進行分離、量化及鑑定,現今最為廣泛使用的是二維凝膠蛋白質電泳加上質譜鑑定合併而成,但是鑒於二維凝膠蛋白質電泳過程繁雜、耗時良久且具有勞動密集易產生人為誤差的缺點,相較之下,近年來對串聯式質譜所產生的數據運用於蛋白質資料庫的搜尋有更進一步的了解,質譜配合上液相層析分離系統非常適用於蛋白質組成較為簡單的生物體液檢體。本研究針對單以液相層析串聯式質譜為基礎的生物體液蛋白質體分析系統進行研發,發展的結果可直接使用於各種含有不同蛋白質種類及含量的檢體,有助於縮短分析時間以及減少人為的誤差。同時,本研究於開發完成後,對於直接暴露使用切削油的金屬加工作業環境所產生的油煙之大鼠,應用此系統觀察其肺沖堤液中蛋白質體之改變。結果顯示有29種蛋白質在暴露過程後具顯著的改變,包含了surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g. transforming growth factor alpha), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin)以及其他種的蛋白質 (e.g., cathepsin D, saposin, and intestinal trefoil factor),SP-A及SP-D在暴露完後大幅的減少至對照組的0.24及0.38倍,而 transforming growth factor alpha及calcium-binding proteins則是相較於對照組增加了4.46、1.4、1.8倍。由於檢測到這些具有功能的蛋白質含量的改變,本研究結果希望有助於了解造成肺功能改變的生理機制。

     Biological fluids, such as serum, urine, cerebrospinal fluid (CSF), and lavage, are characteristics of different organ systems and body cavities and can be used for pathology monitoring. Especially, the proteins in body fluids are not only used for diagnosis but also contain important information related to pathology pathways. Proteomics refers to the systematic investigation of the proteins in a cell culture or a tissue, that is, the proteome, by separation, quantification, and identification of the complicated protein mixture. Today, the most popular analytical method for proteomic study is the combination of two-dimensional gel electrophoresis (2D-GE) and mass spectrometry (MS) protein identification (ID). However, 2D-GE process is time-consuming and highly labor-intensive. Alternative approaches that eliminating 2D-GE steps in proteomic study are desired and under intensive investigation. Recently, liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used for proteome identification without tedious 2D-GE. We foresee that LC-MS/MS will be very useful to analyze biological fluids for the search of biomarkers related to various diseases. This study design and setup an LC-MS/MS-based system for proteomic analysis of biological fluids. This system can be used for the identification and quantification of proteomes in various biological fluids for biomarker discovery. The system should shorten the analysis time and reduce experimentation variations by automation. This analytical system has been used to study the changes in the proteome of the bronchoalveolar lavage fluid (BALF) of rats exposed directly to a fuming oil-releasing environment in a metal processing factory. The results revealed that 29 proteins exhibited significant changes after exposure. These proteins included surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g. transforming growth factor alpha), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin), and other proteins (e.g., cathepsin D, saposin, and intestinal trefoil factor). A large decrease in protein levels of SP-A and SP-D (0.24- and 0.38-fold, respectively) following exposure was observed. In contrast, protein levels of transforming growth factor alpha and calcium-binding proteins were significantly increased (4.46- and 1.4-1.8-fold, respectively). Due to the diverse functions of these proteins, the results might contribute to understand the mechanisms involved in lung disorders induced by oil mist exposure.

    中文摘要………………………………………………………………4 英文摘要………………………………………………………………6 圖表目錄………………………………………………………………10 中英文對照表…………………………………………………………11 英文縮寫對照表………………………………………………………12 第一章、研究背景及目的……………………………………………13 1. 生物體液的蛋白質體組成及肺沖堤液的蛋白質體於病理觀察上的運用 2. 蛋白質體學(proteomics)分析技術 3. 使用切削油的作業環境油煙之危害 4. 研究目的 第二章、研究材料與方法……………………………………………18 1. 蛋白質體分析系統之架設 1.1 分析系統流程圖 1.2 分析儀器與設備 1.3 分析儀器架設圖 2. 動物實驗步驟 2.1 實驗動物作業環境暴露 2.2 鼠肺部蛋白質萃取 2.3 以蛋白質混合物分析系統分析鼠肺部的蛋白質體樣本 第三章、結果與討論…………………………………………………28 1. 蛋白質體分析系統之建立 1.1 蛋白質種類鑑定之依據 1.2 蛋白質種類鑑定系統之需求 1.3 觀察蛋白質改變量之分析系統需求 1.4 分析系統需最佳化的項目 2. 大鼠油煙環境暴露之肺沖提液蛋白質體分析 2.1切削油作業環境的油煙及對大鼠體重與肺沖提液蛋白質濃度之影響 2.2 二維凝膠電泳之蛋白質分佈 2.3 肺沖提液混合樣品之定性分析結果 2.4 肺沖提液個別樣品之定量及統計分析結果 2.5 具統計差異的蛋白質之文獻探討 第四章、結論…………………………………………………………55 參考文獻………………………………………………………………56 附錄一:蛋白質鑑定結果……………………………………………62 附錄二:暴露組與對照組31次一次質譜層析峰積分………………74

    1. Sanchez-Carbayo M., Urrutia M., Silva JM. Romani R., De Buitrago JM., Navajo JA., Comparative predictive values of urinary cytology, urinary bladder cancer antigen, CYFRA 21-1 and NMP22 for evaluating symptomatic patients at risk for bladder cancer. Journal of Urology. 165(5):1462-7, 2001

    2. Ghafouri B., Stahlbom B., Tagesson C., Lindahl M., Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics. 2(1):112-20, 2002

    3. Vermeulen M., Van Vliet HH., Lindsay KW., Hijdra A., Van Gijn J., Source of fibrin/fibrinogen degradation products in the CSF after subarachnoid hemorrhage. Journal of Neurosurgery. 63(4):573-7, 1985

    4. Ravindra, Mittal AK., Van Grieken R., Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons. Reviews on Environmental Health. 16(3):169-89, 2001

    5. Apostoli P., Crippa M., Cottica D., Pozzoli L., Alessio L., Qualitative and quantitative changes in the polycyclic aromatic hydrocarbons in cutting oils after their use. Giornale Italiano di Medicina del Lavoro. 11(6):263-6, 1989

    6. Ameille J., Wild P., Choudat D., Ohl G. Vaucouleur JF., Chanut JC., Brochard P., Respiratory symptoms, ventilatory impairment, and bronchial reactivity in oil mist-exposed automobile workers. American Journal of Industrial Medicine. 27(2):247-56, 1995

    7. Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives. 111(4):455-60, 2003

    8. Gygi SP., Rist B., Gerber SA., Turecek F., Gelb MH., Aebersold R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Biotechnology 17(10):994-9, 1999

    9. Rovshan G., Yates J. A Hypergeometric Probability Model for Protein Identification and Validation Using Tandem Mass Spectral Data and Protein Sequence Databases. Analytical Chemistry 75: 3792-3798, 2003

    10. Dirk A., Michael P., Yates J. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Analytical Chemistry 73: 5683-5690, 2001

    11. Moshe H., Yariv H., Smilansky Z., Intensity-Based Statistical Scorer for Tandem Mass Spectrometry. Analytical Chemistry 75: 435-4442, 003

    12. Joshua N., Susan M., Kenneth J., Ronald J., Nicolas H., Richard D., David L., Pounds G.., Toward a Human Blood Serum Proteome. Molecular & Cellular Proteomics 1: 947–955, 2002

    13. Yates R., Eng K., McConnack L., Mining Genomes: Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases. Analytical Chemistry 67: 3202-3210,1995

    14. Yates R., Eng K., McConnack L., McConnack S., Method to Correlate Tandem Mass Spectra of Modified Peptides to Amino Acid Sequences in the Protein Database. Analytical Chemistry 67: 1426-1436,1995

    15. Noel-Georis I., Bernard A., Falmagne P., Wattiez R. Database of bronchoalveolar lavage fluid proteins, Journal of Chromatogram B, 771, 221-236, 2002

    16. Wang J. Y., Shieh C. C., Yu C. K., Lei H. Y., Allergen-induced bronchial inflammation is associated with decreased levels of surfactant proteins A and D in a murine model of asthma, Clinical and Experimental Allergy, 31, 652-662, 2001

    17. Muller B., Seifart C., Barth P. J., Effect of air pollutants on the pulmonary surfactant system, European Journal of Clinical Investigation, 28, 762-777, 1998

    18. Hohlfeld J. M., Ahlf K., Enhorning G., Balke K. et al., Dysfunction of Pulmonary Surfactant in Asthmatics after Segmental Allergen Challenge, American Journal of Respiratory and Critical Care Medicine, 159, 1803-1809, 1999

    19. Subramaniam S., Whitsett J. A., Hull W., Gairola C. G., Alteration of Pulmonary Surfactant Proteins in Rats Chronically Exposed to Cigarette Smoke, Toxicol. Appl. Pharm., 140, 274-280, 1996

    20. He C., Proteomic analysis of human bronchoalveolar lavage fluid: expression profiling of surfactant-associated protein A isomers derived from human pulmonary alveolar proteinosis using immunoaffinity detection, Proteomics, 3, 87-94, 2003

    21. Wattiez R., Hermans C., Cruyt C., Bernard A., Falmagne P., Human bronchoalveolar lavage fluid protein two-dimensional database: Study of interstitial lung diseases, Electrophoresis, 21, 2703-2712, 2000

    22. Signor L., Tigani B., Beckmann N., Falchetto R., Stoeckli M., Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge, Proteomics, 4, 2101-2110, 2004

    23. Noel-Georis I., Bernard A., Falmagne P., Wattiez R., Proteomic-based approach for the identification of tumor markers associated with hepatocellular carcinoma, Discovery Markers, 17, 271-284, 2001

    24. Bowler R. P., Duda B., Chan E. D., Enghild J. J. et al., Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury, American Journal of Physiology: Lung Cellular & Molecular Physiology, 286, L1095-L1104, 2004

    25. Lindahl M., Stahlbom B., Svartz J., Tagesson C., Protein patterns of human nasal and bronchoalveolar lavage fluids analyzed with two-dimensional gel electrophoresis, Electrophoresis, 19, 3222-3229, 1998

    26. Chesnutt A. N., Kheradmand F., Folkesson H. G., Alberts M. et al., Soluble transforming growth factor-alpha is present in the pulmonary edema fluid of patients with acute lung injury, Chest, 111, 652-656, 1997

    27. Madtes D.K., Rubenfeld G., Klima L.D., Milberg J.A. et al., Elevated Transforming Growth Factor- Levels in Bronchoalveolar Lavage Fluid of Patients with Acute Respiratory Distress Syndrome, American Journal of Respiratory and Critical Care Medicine, 158, 424-430, 1998

    28 Donato R., S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles, International Journal of Biochemistry Cell Biology, 33, 637-668, 2001

    29. Creuwels M., Van Golde G., HaagsmanP., The Pulmonary Surfactant System: Biochemical and Clinical Aspects, Lung, 175, 1-39, 1997

    無法下載圖示 校內:3004-08-24公開
    校外:3004-08-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE