| 研究生: |
陳邦維 Chen, Pang-Wei |
|---|---|
| 論文名稱: |
發展以液相層析串聯式質譜為基礎的生物體液蛋白質體分析系統並應用它來評估油煙暴露對大鼠肺沖提液蛋白質體之影響 Development of an LC-MS/MS-based system for the proteomic analysis of biological fluids and its application in assessing the effect of fuming oil exposure on the BALF proteome of rat |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 體液 、蛋白質體 、質譜 、大鼠 、油煙 、作業環境暴露 、液相層析 、肺沖堤 |
| 外文關鍵詞: | proteomics, fuming oil-releasing environment, bronchoalveolar lavage fluid (BALF), protein identification, body fluids, proteome, LC-MS/MS |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物體液,包含了體液(body fluid),泛指身體分泌的液體,包括血清、尿液、腦脊液…等,另一種形式則是以外來液體沖堤體腔或特定器官觀察其表面成份的組成,生物體液代表著不同器官、系統或是體腔的特徵,所以常運用至病理上的觀察,尤其以體液中的蛋白質組成除了可當作診斷的依據,對於病理的機制亦是重要的參考。
而蛋白質體學(proteomics)的技術即是針對蛋白質混合物進行分離、量化及鑑定,現今最為廣泛使用的是二維凝膠蛋白質電泳加上質譜鑑定合併而成,但是鑒於二維凝膠蛋白質電泳過程繁雜、耗時良久且具有勞動密集易產生人為誤差的缺點,相較之下,近年來對串聯式質譜所產生的數據運用於蛋白質資料庫的搜尋有更進一步的了解,質譜配合上液相層析分離系統非常適用於蛋白質組成較為簡單的生物體液檢體。本研究針對單以液相層析串聯式質譜為基礎的生物體液蛋白質體分析系統進行研發,發展的結果可直接使用於各種含有不同蛋白質種類及含量的檢體,有助於縮短分析時間以及減少人為的誤差。同時,本研究於開發完成後,對於直接暴露使用切削油的金屬加工作業環境所產生的油煙之大鼠,應用此系統觀察其肺沖堤液中蛋白質體之改變。結果顯示有29種蛋白質在暴露過程後具顯著的改變,包含了surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g. transforming growth factor alpha), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin)以及其他種的蛋白質 (e.g., cathepsin D, saposin, and intestinal trefoil factor),SP-A及SP-D在暴露完後大幅的減少至對照組的0.24及0.38倍,而 transforming growth factor alpha及calcium-binding proteins則是相較於對照組增加了4.46、1.4、1.8倍。由於檢測到這些具有功能的蛋白質含量的改變,本研究結果希望有助於了解造成肺功能改變的生理機制。
Biological fluids, such as serum, urine, cerebrospinal fluid (CSF), and lavage, are characteristics of different organ systems and body cavities and can be used for pathology monitoring. Especially, the proteins in body fluids are not only used for diagnosis but also contain important information related to pathology pathways. Proteomics refers to the systematic investigation of the proteins in a cell culture or a tissue, that is, the proteome, by separation, quantification, and identification of the complicated protein mixture. Today, the most popular analytical method for proteomic study is the combination of two-dimensional gel electrophoresis (2D-GE) and mass spectrometry (MS) protein identification (ID). However, 2D-GE process is time-consuming and highly labor-intensive. Alternative approaches that eliminating 2D-GE steps in proteomic study are desired and under intensive investigation. Recently, liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used for proteome identification without tedious 2D-GE. We foresee that LC-MS/MS will be very useful to analyze biological fluids for the search of biomarkers related to various diseases. This study design and setup an LC-MS/MS-based system for proteomic analysis of biological fluids. This system can be used for the identification and quantification of proteomes in various biological fluids for biomarker discovery. The system should shorten the analysis time and reduce experimentation variations by automation. This analytical system has been used to study the changes in the proteome of the bronchoalveolar lavage fluid (BALF) of rats exposed directly to a fuming oil-releasing environment in a metal processing factory. The results revealed that 29 proteins exhibited significant changes after exposure. These proteins included surfactant-associated proteins (SP-A and SP-D), inflammatory proteins (complement component 3, immunoglobulins, lysozyme, etc.), growth factors (e.g. transforming growth factor alpha), calcium-binding proteins (calcyclin, calgranulin A, calreticulin, and calvasculin), and other proteins (e.g., cathepsin D, saposin, and intestinal trefoil factor). A large decrease in protein levels of SP-A and SP-D (0.24- and 0.38-fold, respectively) following exposure was observed. In contrast, protein levels of transforming growth factor alpha and calcium-binding proteins were significantly increased (4.46- and 1.4-1.8-fold, respectively). Due to the diverse functions of these proteins, the results might contribute to understand the mechanisms involved in lung disorders induced by oil mist exposure.
1. Sanchez-Carbayo M., Urrutia M., Silva JM. Romani R., De Buitrago JM., Navajo JA., Comparative predictive values of urinary cytology, urinary bladder cancer antigen, CYFRA 21-1 and NMP22 for evaluating symptomatic patients at risk for bladder cancer. Journal of Urology. 165(5):1462-7, 2001
2. Ghafouri B., Stahlbom B., Tagesson C., Lindahl M., Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics. 2(1):112-20, 2002
3. Vermeulen M., Van Vliet HH., Lindsay KW., Hijdra A., Van Gijn J., Source of fibrin/fibrinogen degradation products in the CSF after subarachnoid hemorrhage. Journal of Neurosurgery. 63(4):573-7, 1985
4. Ravindra, Mittal AK., Van Grieken R., Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons. Reviews on Environmental Health. 16(3):169-89, 2001
5. Apostoli P., Crippa M., Cottica D., Pozzoli L., Alessio L., Qualitative and quantitative changes in the polycyclic aromatic hydrocarbons in cutting oils after their use. Giornale Italiano di Medicina del Lavoro. 11(6):263-6, 1989
6. Ameille J., Wild P., Choudat D., Ohl G. Vaucouleur JF., Chanut JC., Brochard P., Respiratory symptoms, ventilatory impairment, and bronchial reactivity in oil mist-exposed automobile workers. American Journal of Industrial Medicine. 27(2):247-56, 1995
7. Li N., Sioutas C., Cho A., Schmitz D., Misra C., Sempf J., Wang M., Oberley T., Froines J., Nel A., Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environmental Health Perspectives. 111(4):455-60, 2003
8. Gygi SP., Rist B., Gerber SA., Turecek F., Gelb MH., Aebersold R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Biotechnology 17(10):994-9, 1999
9. Rovshan G., Yates J. A Hypergeometric Probability Model for Protein Identification and Validation Using Tandem Mass Spectral Data and Protein Sequence Databases. Analytical Chemistry 75: 3792-3798, 2003
10. Dirk A., Michael P., Yates J. An Automated Multidimensional Protein Identification Technology for Shotgun Proteomics. Analytical Chemistry 73: 5683-5690, 2001
11. Moshe H., Yariv H., Smilansky Z., Intensity-Based Statistical Scorer for Tandem Mass Spectrometry. Analytical Chemistry 75: 435-4442, 003
12. Joshua N., Susan M., Kenneth J., Ronald J., Nicolas H., Richard D., David L., Pounds G.., Toward a Human Blood Serum Proteome. Molecular & Cellular Proteomics 1: 947–955, 2002
13. Yates R., Eng K., McConnack L., Mining Genomes: Correlating Tandem Mass Spectra of Modified and Unmodified Peptides to Sequences in Nucleotide Databases. Analytical Chemistry 67: 3202-3210,1995
14. Yates R., Eng K., McConnack L., McConnack S., Method to Correlate Tandem Mass Spectra of Modified Peptides to Amino Acid Sequences in the Protein Database. Analytical Chemistry 67: 1426-1436,1995
15. Noel-Georis I., Bernard A., Falmagne P., Wattiez R. Database of bronchoalveolar lavage fluid proteins, Journal of Chromatogram B, 771, 221-236, 2002
16. Wang J. Y., Shieh C. C., Yu C. K., Lei H. Y., Allergen-induced bronchial inflammation is associated with decreased levels of surfactant proteins A and D in a murine model of asthma, Clinical and Experimental Allergy, 31, 652-662, 2001
17. Muller B., Seifart C., Barth P. J., Effect of air pollutants on the pulmonary surfactant system, European Journal of Clinical Investigation, 28, 762-777, 1998
18. Hohlfeld J. M., Ahlf K., Enhorning G., Balke K. et al., Dysfunction of Pulmonary Surfactant in Asthmatics after Segmental Allergen Challenge, American Journal of Respiratory and Critical Care Medicine, 159, 1803-1809, 1999
19. Subramaniam S., Whitsett J. A., Hull W., Gairola C. G., Alteration of Pulmonary Surfactant Proteins in Rats Chronically Exposed to Cigarette Smoke, Toxicol. Appl. Pharm., 140, 274-280, 1996
20. He C., Proteomic analysis of human bronchoalveolar lavage fluid: expression profiling of surfactant-associated protein A isomers derived from human pulmonary alveolar proteinosis using immunoaffinity detection, Proteomics, 3, 87-94, 2003
21. Wattiez R., Hermans C., Cruyt C., Bernard A., Falmagne P., Human bronchoalveolar lavage fluid protein two-dimensional database: Study of interstitial lung diseases, Electrophoresis, 21, 2703-2712, 2000
22. Signor L., Tigani B., Beckmann N., Falchetto R., Stoeckli M., Two-dimensional electrophoresis protein profiling and identification in rat bronchoalveolar lavage fluid following allergen and endotoxin challenge, Proteomics, 4, 2101-2110, 2004
23. Noel-Georis I., Bernard A., Falmagne P., Wattiez R., Proteomic-based approach for the identification of tumor markers associated with hepatocellular carcinoma, Discovery Markers, 17, 271-284, 2001
24. Bowler R. P., Duda B., Chan E. D., Enghild J. J. et al., Proteomic analysis of pulmonary edema fluid and plasma in patients with acute lung injury, American Journal of Physiology: Lung Cellular & Molecular Physiology, 286, L1095-L1104, 2004
25. Lindahl M., Stahlbom B., Svartz J., Tagesson C., Protein patterns of human nasal and bronchoalveolar lavage fluids analyzed with two-dimensional gel electrophoresis, Electrophoresis, 19, 3222-3229, 1998
26. Chesnutt A. N., Kheradmand F., Folkesson H. G., Alberts M. et al., Soluble transforming growth factor-alpha is present in the pulmonary edema fluid of patients with acute lung injury, Chest, 111, 652-656, 1997
27. Madtes D.K., Rubenfeld G., Klima L.D., Milberg J.A. et al., Elevated Transforming Growth Factor- Levels in Bronchoalveolar Lavage Fluid of Patients with Acute Respiratory Distress Syndrome, American Journal of Respiratory and Critical Care Medicine, 158, 424-430, 1998
28 Donato R., S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles, International Journal of Biochemistry Cell Biology, 33, 637-668, 2001
29. Creuwels M., Van Golde G., HaagsmanP., The Pulmonary Surfactant System: Biochemical and Clinical Aspects, Lung, 175, 1-39, 1997
校內:3004-08-24公開