| 研究生: |
朱建安 Chu, Chien-An |
|---|---|
| 論文名稱: |
miR-338-5p和其標靶基因在大腸直腸癌扮演的角色 The role of miR-338-5p and its target genes in the tumorigenesis of human colon |
| 指導教授: |
周楠華
Chow, Nan-Haw |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | miR-338-5p 、PIK3C3 、細胞自噬 、大腸直腸癌 、爬行 、侵犯 、轉移 |
| 外文關鍵詞: | miR-338-5p, PIK3C3, autophagy, colorectal cancer, migration, invasion, metastasis |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
遠端轉移是大腸直腸癌致死的首要原因。微核糖核酸是參與調控癌細胞增生、腫瘤侵犯及轉移的重要因子。從大腸直腸癌轉移組織中的篩選顯示,有大量miR-338-5p微核糖核酸的表現,而且phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) 可能是miR-338-5p調控細胞自噬作用的標靶基因之一。我們使用定量聚合酶連鎖反應,分析良性大腸直腸息肉及惡性直腸癌組織的miR-338-5p及其標靶基因的表現。使用小鼠脾臟注射動物模式,驗證miR-338-5p對於癌細胞轉移的重要性。本研究確認PIK3C3是miR-338-5p其中的一個標靶基因。在臨床檢體中的miR-338-5p表現,和腫瘤分期、遠端轉移、及病人存活率呈現正相關。組織中有較高miR-338-5p/PIK3C 3比值的病人,其術後的存活率也較差。以miR-338-5p穩定過度表現的細胞株進行動物實驗,證明過度表現miR-338-5p,會促進大腸直腸癌細胞轉移到小鼠的肝臟及肺臟,而且在轉移腫瘤中的PIK3C3表現的確也被抑制。我們也發現PIK3C3可以抑制轉移腫瘤的生長。透過試管中的實驗,發現miR-338-5p 透過抑制PIK3C3的表現,可以誘發細胞爬行及侵襲。經由正向及反向的方法,證明細胞自噬也參與miR-338-5p誘發大腸直腸癌細胞侵犯及轉移的過程。我們發現miR-338-5p也會抑制Sprouty 2 (SPRY2)的表現,因此推測 miR-338-5p還會透過細胞自噬機轉以外的其他訊息傳導路徑,來調控大腸直腸癌的腫瘤形成。我們的研究證明,miR-338-5p可以促進大腸直腸癌的細胞爬行、侵犯及轉移;而且PIK3C3相關的細胞自噬訊息傳導路徑是其中重要的機轉。PIK3C3是miR-338-5p調控大腸直腸癌轉移的重要標靶基因。miR-338-5p/PIK3C3的比值,可以成為評估大腸直腸癌病人預後的生物標記。
Tumor metastasis is the leading cause of cancer-related mortality in colorectal cancer (CRC). MicroRNAs (miRNAs) are epigenetic factors that regulate cell proliferation, invasion, and tumor metastasis. Our pilot study found that expression of miR-338-5p is significantly higher in primary CRCs with metastasis and phosphatidylinositol 3-kinase, catalytic subunit type 3 (PIK3C3) might be targeted by miR-338-5p. Here, we provide direct evidence that expression of miR-338-5p is positively related to tumor staging, distant metastasis and poor patient survival. PIK3C3 is one of the target genes of miR-338-5p. Patients with higher ratios of miR-338-5p/PIK3C3 in primary CRCs had an increased risk of poor overall survival. Over-expression of miR-338-5p promoted CRC metastasis to the liver and lung in a mouse spleen xenograft experiment, in which PIK3C3 was down-regulated in the metastatic tumors. In contrast, overexpression of PIK3C3 in miR-338-5p stable cells inhibited the growth of metastatic tumors. Both migration and invasion of CRC in vitro induced by miR-338-5p are mediated by suppression of PIK3C3. Using forward and reverse approaches, autophagy was proved to involve in CRC migration and invasion induced by miR-338-5p. Additionally, SPRY2 was suppressed by overexpression of miR-338-5p in CRC cells. In addition, autophagy-independent pathway (e.g. SPRY2-related signaling) might also play a role in the miR-338-5p-related CRC tumorigenesis. Taken together, miR-338-5p induces migration, invasion and metastasis of CRC, in part through PIK3C3-related autophagy pathway. The miR-338-5p/PIK3C3 ratio may become a prognostic biomarker for CRC patients.
1. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424 (2018).
2. S. D. Markowitz, M. M. Bertagnolli, Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 361, 2449-2460 (2009).
3. M. R. Weiser, AJCC 8th Edition: Colorectal Cancer. Annals of surgical oncology 25, 1454-1455 (2018).
4. S. B. Edge, American Joint Committee on Cancer., American Cancer Society., AJCC cancer staging handbook : from the AJCC cancer staging manual. (Springer, New York, ed. 7th, 2010).
5. C. C. Compton, American Joint Committee on Cancer. (Springer,, New York, 2012).
6. V. T. DeVita, S. Hellman, S. A. Rosenberg, Cancer, principles & practice of oncology. (Lippincott Williams & Wilkins, Philadelphia, PA, ed. 7th, 2005).
7. Y. Wang, T. Jatkoe, Y. Zhang, M. G. Mutch, D. Talantov, J. Jiang, H. L. McLeod, D. Atkins, Gene expression profiles and molecular markers to predict recurrence of Dukes' B colon cancer. J Clin Oncol 22, 1564-1571 (2004).
8. L. He, G. J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531 (2004).
9. D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004).
10. T. Jerome, P. Laurie, B. Louis, C. Pierre, Enjoy the Silence: The Story of let-7 MicroRNA and Cancer. Curr Genomics 8, 229-233 (2007).
11. H. W. Hwang, J. T. Mendell, MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94, 776-780 (2006).
12. S. M. Johnson, H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K. L. Reinert, D. Brown, F. J. Slack, RAS is regulated by the let-7 MicroRNA family. Cell 120, 635-647 (2005).
13. Z. Lu, M. Liu, V. Stribinskis, C. M. Klinge, K. S. Ramos, N. H. Colburn, Y. Li, MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373-4379 (2008).
14. M. Z. Michael, O. C. SM, N. G. van Holst Pellekaan, G. P. Young, R. J. James, Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1, 882-891 (2003).
15. W. Weng, J. Feng, H. Qin, Y. Ma, A. Goel, An update on miRNAs as biological and clinical determinants in colorectal cancer: a bench-to-bedside approach. Future Oncol 11, 1791-1808 (2015).
16. M. Du, S. Liu, D. Gu, Q. Wang, L. Zhu, M. Kang, D. Shi, H. Chu, N. Tong, J. Chen, T. S. Adams, Z. Zhang, M. Wang, Clinical potential role of circulating microRNAs in early diagnosis of colorectal cancer patients. Carcinogenesis 35, 2723-2730 (2014).
17. Y. Toiyama, M. Takahashi, K. Hur, T. Nagasaka, K. Tanaka, Y. Inoue, M. Kusunoki, C. R. Boland, A. Goel, Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer. J Natl Cancer Inst 105, 849-859 (2013).
18. Y. Ma, P. Zhang, F. Wang, H. Zhang, Y. Yang, C. Shi, Y. Xia, J. Peng, W. Liu, Z. Yang, H. Qin, Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun 3, 1291 (2012).
19. H. Igarashi, H. Kurihara, K. Mitsuhashi, M. Ito, H. Okuda, S. Kanno, T. Naito, S. Yoshii, H. Takahashi, T. Kusumi, T. Hasegawa, Y. Sukawa, Y. Adachi, K. Okita, K. Hirata, Y. Imamura, Y. Baba, K. Imai, H. Suzuki, H. Yamamoto, K. Nosho, Y. Shinomura, Association of MicroRNA-31-5p with Clinical Efficacy of Anti-EGFR Therapy in Patients with Metastatic Colorectal Cancer. Ann Surg Oncol 22, 2640-2648 (2015).
20. G. Manceau, S. Imbeaud, R. Thiebaut, F. Liebaert, K. Fontaine, F. Rousseau, B. Genin, D. Le Corre, A. Didelot, M. Vincent, J. B. Bachet, B. Chibaudel, O. Bouche, B. Landi, F. Bibeau, K. Leroy, F. Penault-Llorca, J. L. Van Laethem, P. Demetter, S. Tejpar, S. Rossi, N. Mosakhani, P. Osterlund, R. Ristamaki, V. Sarhadi, S. Knuutila, V. Boige, T. Andre, P. Laurent-Puig, Hsa-miR-31-3p expression is linked to progression-free survival in patients with KRAS wild-type metastatic colorectal cancer treated with anti-EGFR therapy. Clin Cancer Res 20, 3338-3347 (2014).
21. T. F. Hansen, F. B. Sorensen, J. Lindebjerg, A. Jakobsen, The predictive value of microRNA-126 in relation to first line treatment with capecitabine and oxaliplatin in patients with metastatic colorectal cancer. BMC cancer 12, 83 (2012).
22. J. A. Ju, Y. C. Huang, S. H. Lan, T. H. Wang, P. C. Lin, J. C. Lee, K. C. Niu, Y. F. Tian, H. S. Liu, Identification of colorectal cancer recurrence-related microRNAs. Genomic Med Biomarkers Health Sci 4, 19-20 (2012).
23. J. Kim, A. Krichevsky, Y. Grad, G. D. Hayes, K. S. Kosik, G. M. Church, G. Ruvkun, Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci U S A 101, 360-365 (2004).
24. P. Landgraf, M. Rusu, R. Sheridan, A. Sewer, N. Iovino, A. Aravin, S. Pfeffer, A. Rice, A. O. Kamphorst, M. Landthaler, C. Lin, N. D. Socci, L. Hermida, V. Fulci, S. Chiaretti, R. Foa, J. Schliwka, U. Fuchs, A. Novosel, R. U. Muller, B. Schermer, U. Bissels, J. Inman, Q. Phan, M. Chien, D. B. Weir, R. Choksi, G. De Vita, D. Frezzetti, H. I. Trompeter, V. Hornung, G. Teng, G. Hartmann, M. Palkovits, R. Di Lauro, P. Wernet, G. Macino, C. E. Rogler, J. W. Nagle, J. Ju, F. N. Papavasiliou, T. Benzing, P. Lichter, W. Tam, M. J. Brownstein, A. Bosio, A. Borkhardt, J. J. Russo, C. Sander, M. Zavolan, T. Tuschl, A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414 (2007).
25. S. Barik, An intronic microRNA silences genes that are functionally antagonistic to its host gene. Nucleic Acids Res 36, 5232-5241 (2008).
26. A. J. Schetter, S. Y. Leung, J. J. Sohn, K. A. Zanetti, E. D. Bowman, N. Yanaihara, S. T. Yuen, T. L. Chan, D. L. Kwong, G. K. Au, C. G. Liu, G. A. Calin, C. M. Croce, C. C. Harris, MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA 299, 425-436 (2008).
27. A. Budhu, H. L. Jia, M. Forgues, C. G. Liu, D. Goldstein, A. Lam, K. A. Zanetti, Q. H. Ye, L. X. Qin, C. M. Croce, Z. Y. Tang, X. W. Wang, Identification of metastasis-related microRNAs in hepatocellular carcinoma. Hepatology 47, 897-907 (2008).
28. T. S. Wong, X. B. Liu, B. Y. Wong, R. W. Ng, A. P. Yuen, W. I. Wei, Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14, 2588-2592 (2008).
29. K. Sun, H. J. Deng, S. T. Lei, J. Q. Dong, G. X. Li, miRNA-338-3p suppresses cell growth of human colorectal carcinoma by targeting smoothened. World J Gastroenterol 19, 2197-2207 (2013).
30. F. L. Yong, C. W. Law, C. W. Wang, Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC cancer 13, 280 (2013).
31. E. Bilegsaikhan, H. N. Liu, X. Z. Shen, T. T. Liu, Circulating miR-338-5p is a potential diagnostic biomarker in colorectal cancer. J Dig Dis 19, 404–410 (2018).
32. Y. Li, Y. Huang, Z. Qi, T. Sun, Y. Zhou, MiR-338-5p promotes glioma cell invasion by regulating TSHZ3 and MMP2. Cell Mol Neurobiol 38, 669-677 (2017).
33. W. C. Lin, L. H. Chen, Y. C. Hsieh, P. W. Yang, L. C. Lai, E. Y. Chuang, J. M. Lee, M. H. Tsai, miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis 40, 883-892 (2019).
34. J. A. Ju, C. T. Huang, S. H. Lan, T. H. Wang, P. C. Lin, J. C. Lee, Y. F. Tian, H. S. Liu, Characterization of a colorectal cancer migration and autophagy-related microRNA miR-338-5p and its target gene PIK3C3. Biomarkers Genomic Med 5, 74-78 (2013).
35. B. Vanhaesebroeck, S. J. Leevers, K. Ahmadi, J. Timms, R. Katso, P. C. Driscoll, R. Woscholski, P. J. Parker, M. D. Waterfield, Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70, 535-602 (2001).
36. P. V. Schu, K. Takegawa, M. J. Fry, J. H. Stack, M. D. Waterfield, S. D. Emr, Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88-91 (1993).
37. K. Lindmo, H. Stenmark, Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119, 605-614 (2006).
38. E. Itakura, C. Kishi, K. Inoue, N. Mizushima, Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19, 5360-5372 (2008).
39. Q. Lv, W. Wang, J. Xue, F. Hua, R. Mu, H. Lin, J. Yan, X. Lv, X. Chen, Z. W. Hu, DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial-mesenchymal transition in human breast cancer. Cancer Res 72, 3238-3250 (2012).
40. Q. Lv, F. Hua, Z. W. Hu, DEDD, a novel tumor repressor, reverses epithelial-mesenchymal transition by activating selective autophagy. Autophagy 8, 1675-1676 (2012).
41. T. Yoshimori, Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313, 453-458 (2004).
42. G. Ng, J. Huang, The significance of autophagy in cancer. Mol Carcinog 43, 183-187 (2005).
43. M. M. Hippert, P. S. O'Toole, A. Thorburn, Autophagy in cancer: good, bad, or both? Cancer Res 66, 9349-9351 (2006).
44. Y. Kondo, T. Kanzawa, R. Sawaya, S. Kondo, The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5, 726-734 (2005).
45. Y. Sun, J. H. Liu, Y. X. Sui, L. Jin, Y. Yang, S. M. Lin, H. Shi, Beclin1 overexpression inhibitis proliferation, invasion and migration of CaSki cervical cancer cells. Asian Pac J Cancer Prev. 12, 1269-1273 (2011).
46. V. Tuloup-Minguez, A. Hamai, A. Greffard, V. Nicolas, P. Codogno, J. Botti, Autophagy modulates cell migration and beta1 integrin membrane recycling. Cell Cycle 12, 3317-3328 (2013).
47. H. Wang, Y. Wang, L. Qian, X. Wang, H. Gu, X. Dong, S. Huang, M. Jin, H. Ge, C. Xu, Y. Zhang, RNF216 contributes to proliferation and migration of colorectal cancer via suppressing BECN1-dependent autophagy. Oncotarget 7, 51174-51183 (2016).
48. D. H. Cho, Y. K. Jo, S. C. Kim, I. J. Park, J. C. Kim, Down-regulated expression of ATG5 in colorectal cancer. Anticancer Res 32, 4091-4096 (2012).
49. J. H. Choi, Y. S. Cho, Y. H. Ko, S. U. Hong, J. H. Park, M. A. Lee, Absence of autophagy-related proteins expression is associated with poor prognosis in patients with colorectal adenocarcinoma. Gastroenterol Res Pract 2014, 179586 (2014).
50. Z. Yang, R. A. Ghoorun, X. Fan, P. Wu, Y. Bai, J. Li, H. Chen, L. Wang, J. Wang, High expression of Beclin-1 predicts favorable prognosis for patients with colorectal cancer. Clin Res Hepatol Gastroenterol 39, 98-106 (2015).
51. R. Lu, Z. Yang, G. Xu, S. Yu, miR-338 modulates proliferation and autophagy by PI3K/AKT/mTOR signaling pathway in cervical cancer. Biomed Pharmacother 105, 633-644 (2018).
52. N. Hacohen, S. Kramer, D. Sutherland, Y. Hiromi, M. A. Krasnow, sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253-263 (1998).
53. S. Kramer, M. Okabe, N. Hacohen, M. A. Krasnow, Y. Hiromi, Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126, 2515-2525 (1999).
54. A. A. de Maximy, Y. Nakatake, S. Moncada, N. Itoh, J. P. Thiery, S. Bellusci, Cloning and expression pattern of a mouse homologue of drosophila sprouty in the mouse embryo. Mech Dev 81, 213-216 (1999).
55. O. C. Leeksma, T. A. Van Achterberg, Y. Tsumura, J. Toshima, E. Eldering, W. G. Kroes, C. Mellink, M. Spaargaren, K. Mizuno, H. Pannekoek, C. J. de Vries, Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem 269, 2546-2556 (2002).
56. S. Masoumi-Moghaddam, A. Amini, D. L. Morris, The developing story of Sprouty and cancer. Cancer Metastasis Rev 33, 695-720 (2014).
57. I. Gross, B. Bassit, M. Benezra, J. D. Licht, Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276, 46460-46468 (2001).
58. M. A. Impagnatiello, S. Weitzer, G. Gannon, A. Compagni, M. Cotten, G. Christofori, Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152, 1087-1098 (2001).
59. X. Li, V. G. Brunton, H. R. Burgar, L. M. Wheldon, J. K. Heath, FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci 117, 6007-6017 (2004).
60. P. Yusoff, D. H. Lao, S. H. Ong, E. S. Wong, J. Lim, T. L. Lo, H. F. Leong, C. W. Fong, G. R. Guy, Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem 277, 3195-3201 (2002).
61. S. Chandramouli, C. Y. Yu, P. Yusoff, D. H. Lao, H. F. Leong, K. Mizuno, G. R. Guy, Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J Biol Chem 283, 1679-1691 (2008).
62. C. W. Fong, H. F. Leong, E. S. Wong, J. Lim, P. Yusoff, G. R. Guy, Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278, 33456-33464 (2003).
63. D. Sayed, S. Rane, J. Lypowy, M. He, I. Y. Chen, H. Vashistha, L. Yan, A. Malhotra, D. Vatner, M. Abdellatif, MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol Biol Cell 19, 3272-3282 (2008).
64. Y. H. Feng, C. L. Wu, C. J. Tsao, J. G. Chang, P. J. Lu, K. T. Yeh, Y. H. Uen, J. C. Lee, A. L. Shiau, Deregulated expression of sprouty2 and microRNA-21 in human colon cancer: Correlation with the clinical stage of the disease. Cancer Biol Ther 11, 111-121 (2011).
65. H. H. Yeh, R. Giri, T. Y. Chang, C. Y. Chou, W. C. Su, H. S. Liu, Ha-ras oncogene-induced Stat3 phosphorylation enhances oncogenicity of the cell. DNA Cell Biol 28, 131-139 (2009).
66. H. H. Yeh, C. H. Wu, R. Giri, K. Kato, K. Kohno, H. Izumi, C. Y. Chou, W. C. Su, H. S. Liu, Oncogenic Ras-induced morphologic change is through MEK/ERK signaling pathway to downregulate Stat3 at a posttranslational level in NIH3T3 cells. Neoplasia 10, 52-60 (2008).
67. Y. S. Tseng, C. C. Tzeng, C. Y. Huang, P. H. Chen, A. W. Chiu, P. Y. Hsu, G. C. Huang, Y. C. Wang, H. S. Liu, Aurora-A overexpression associates with Ha-ras codon-12 mutation and blackfoot disease endemic area in bladder cancer. Cancer lett 241, 93-101 (2006).
68. A. Besse, J. Sana, R. Lakomy, L. Kren, P. Fadrus, M. Smrcka, M. Hermanova, R. Jancalek, S. Reguli, R. Lipina, M. Svoboda, P. Slampa, O. Slaby, MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response. Tumour Biol 37, 7719-7727 (2016).
69. R. W. Carthew, E. J. Sontheimer, Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-655 (2009).
70. A. D. Balgi, B. D. Fonseca, E. Donohue, T. C. Tsang, P. Lajoie, C. G. Proud, I. R. Nabi, M. Roberge, Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PloS one 4, e7124 (2009).
71. S. H. Lan, S. Y. Wu, R. Zuchini, X. Z. Lin, I. J. Su, T. F. Tsai, Y. J. Lin, C. T. Wu, H. S. Liu, Autophagy suppresses tumorigenesis of hepatitis B virus-associated hepatocellular carcinoma through degradation of microRNA-224. Hepatology 59, 505-517 (2014).
72. R. Mathew, C. M. Karp, B. Beaudoin, N. Vuong, G. Chen, H. Y. Chen, K. Bray, A. Reddy, G. Bhanot, C. Gelinas, R. S. Dipaola, V. Karantza-Wadsworth, E. White, Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075 (2009).
73. K. Hur, Y. Toiyama, A. J. Schetter, Y. Okugawa, C. C. Harris, C. R. Boland, A. Goel, Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J Natl Cancer Inst 107, dju492 (2015).
74. F. L. Yong, C. W. Law, C. W. Wang, Potentiality of a triple microRNA classifier: miR-193a-3p, miR-23a and miR-338-5p for early detection of colorectal cancer. BMC Cancer 13, 280 (2013).
75. Y. Li, Y. Huang, Z. Qi, T. Sun, Y. Zhou, MiR-338-5p promotes glioma cell invasion by regulating TSHZ3 and MMP2. Cell Mol Neurobiol 38, 669-677 (2018).
76. J. Long, J. Luo, X. Yin, MiR-338-5p promotes the growth and metastasis of malignant melanoma cells via targeting CD82. Biomed Pharmacother 102, 1195-1202 (2018).
77. K. Sun, G. Su, H. Deng, J. Dong, S. Lei, G. Li, Relationship between miRNA-338-3p expression and progression and prognosis of human colorectal carcinoma. Chin Med J 127, 1884-1890 (2014).
78. B. Guo, L. Liu, J. Yao, R. Ma, D. Chang, Z. Li, T. Song, C. Huang, miR-338-3p suppresses gastric cancer progression through a PTEN-AKT axis by targeting P-REX2a. Mol Cancer Res 12, 313-321 (2014).
79. P. Li, X. Chen, L. Su, C. Li, Q. Zhi, B. Yu, H. Sheng, J. Wang, R. Feng, Q. Cai, J. Li, Y. Yu, M. Yan, B. Liu, Z. Zhu, Epigenetic silencing of miR-338-3p contributes to tumorigenicity in gastric cancer by targeting SSX2IP. PLoS One 8, e66782 (2013).
80. B. Guo, L. Liu, J. Yao, R. Ma, D. Chang, Z. Li, T. Song, H. Chen, miR-338-3p suppresses progression of gastric cancer through PTEN-AKT signaling pathways by targeting P-REX2a. Mol Cancer Res 12, 313-321 (2014).
81. Y. Peng, Y. M. Liu, L. C. Li, L. L. Wang, X. L. Wu, MicroRNA-338 inhibits growth, invasion and metastasis of gastric cancer by targeting NRP1 expression. PloS One 9, e94422 (2014).
82. J. S. Chen, L. L. Liang, H. X. Xu, F. Chen, S. L. Shen, W. Chen, L. Z. Chen, Q. Su, L. J. Zhang, J. Bi, W. T. Zeng, W. Li, N. Ma, X. H. Huang, miR-338-3p inhibits epithelial-mesenchymal transition and metastasis in hepatocellular carcinoma cells. Oncotarget 8, 71418-71429 (2017).
83. H. Xu, L. Zhao, Q. Fang, J. Sun, S. Zhang, C. Zhan, S. Liu, Y. Zhang, MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1alpha. PloS one 9, e115565 (2014).
84. C. Liu, Z. Wang, Y. Wang, W. Gu, MiR-338 suppresses the growth and metastasis of OSCC cells by targeting NRP1. Mol Cell Biochem 398, 115-122 (2015).
85. X. Chen, M. Pan, L. Han, H. Lu, X. Hao, Q. Dong, miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Lett 587, 3729-3737 (2013).
86. X. Zhang, C. Wang, H. Li, X. Niu, X. Liu, D. Pei, X. Guo, X. Xu, Y. Li, miR-338-3p inhibits the invasion of renal cell carcinoma by downregulation of ALK5. Oncotarget 8, 64106-64113 (2017).
87. A. M. Gurtan, V. Lu, A. Bhutkar, P. A. Sharp, In vivo structure-function analysis of human Dicer reveals directional processing of precursor miRNAs. RNA 18, 1116-1122 (2012).
88. T. J. Pugh, W. Yu, J. Yang, A. L. Field, L. Ambrogio, S. L. Carter, K. Cibulskis, P. Giannikopoulos, A. Kiezun, J. Kim, A. McKenna, E. Nickerson, G. Getz, S. Hoffher, Y. H. Messinger, L. P. Dehner, C. W. Roberts, C. Rodriguez-Galindo, G. M. Williams, C. T. Rossi, M. Meyerson, D. A. Hill, Exome sequencing of pleuropulmonary blastoma reveals frequent biallelic loss of TP53 and two hits in DICER1 resulting in retention of 5p-derived miRNA hairpin loop sequences. Oncogene 33, 5295-5302 (2014).
89. A. Kos, N. F. Olde Loohuis, M. L. Wieczorek, J. C. Glennon, G. J. Martens, S. M. Kolk, A. Aschrafi, A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PloS One 7, e31022 (2012).
90. C. H. Chen, C. A. Changou, T. H. Hsieh, Y. C. Lee, C. Y. Chu, K. C. Hsu, H. C. Wang, Y. C. Lin, Y. N. Lo, Y. R. Liu, J. P. Liou, Y. Yen, Dual Inhibition of PIK3C3 and FGFR as a New Therapeutic Approach to Treat Bladder Cancer. Clin Cancer Res 24, 1176-1189 (2018).
91. R. Chen, H. Wang, B. Liang, G. Liu, M. Tang, R. Jia, X. Fan, W. Jing, X. Zhou, H. Wang, Y. Yang, H. Wei, B. Li, J. Zhao, Downregulation of ASPP2 improves hepatocellular carcinoma cells survival via promoting BECN1-dependent autophagy initiation. Cell Death Dis 7, e2512 (2016).
92. B. Pasquier, SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 11, 725-726 (2015).
93. Z. Su, Z. Yang, Y. Xu, Y. Chen, Q. Yu, Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14, 48 (2015).
94. J. Weng, J. Xiao, Y. Mi, X. Fang, Y. Sun, S. Li, Z. Qin, X. Li, T. Liu, S. Zhao, L. Zhou, Y. Wen, PCDHGA9 acts as a tumor suppressor to induce tumor cell apoptosis and autophagy and inhibit the EMT process in human gastric cancer. Cell Death Dis 9, 27 (2018).
95. Y. Zhou, P. W. Wu, X. W. Yuan, J. Li, X. L. Shi, Interleukin-17A inhibits cell autophagy under starvation and promotes cell migration via TAB2/TAB3-p38 mitogen-activated protein kinase pathways in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 20, 250-263 (2016).
96. Z. Chen, Y. Li, C. Zhang, H. Yi, C. Wu, J. Wang, Y. Liu, J. Tan, J. Wen, Downregulation of Beclin 1 and impairment of autophagy in a small population of colorectal cancer. Dig Dis Sci 58, 2887-2894 (2013).
97. L. Wilde, K. Tanson, J. Curry, U. Martinez-Outschoorn, Autophagy in cancer: a complex relationship. Biochem J 475, 1939-1954 (2018).
98. S. Y. Wu, S. H. Lan, D. E. Cheng, W. K. Chen, C. H. Shen, Y. R. Lee, R. Zuchini, H. S. Liu, Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation. Neoplasia 13, 1171-1182 (2011).
99. P. Gulhati, Q. Cai, J. Li, J. Liu, P. G. Rychahou, S. Qiu, E. Y. Lee, S. R. Silva, K. A. Bowen, T. Gao, B. M. Evers, Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer. Clin Cancer Res 15, 7207-7216 (2009).
100. X. Yang, D. D. Yu, F. Yan, Y. Y. Jing, Z. P. Han, K. Sun, L. Liang, J. Hou, L. X. Wei, The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci 5, 14 (2015).
101. X. Yang, X. Xu, J. Zhu, S. Zhang, Y. Wu, Y. Wu, K. Zhao, C. Xing, J. Cao, H. Zhu, M. Li, Z. Ye, W. Peng, miR-31 affects colorectal cancer cells by inhibiting autophagy in cancer-associated fibroblasts. Oncotarget 7, 79617-79628 (2016).
102. D. Ahmed, P. W. Eide, I. A. Eilertsen, S. A. Danielsen, M. Eknaes, M. Hektoen, G. E. Lind, R. A. Lothe, Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2, e71 (2013).
103. H. Sutterluty, C. E. Mayer, U. Setinek, J. Attems, S. Ovtcharov, M. Mikula, W. Mikulits, M. Micksche, W. Berger, Down-regulation of Sprouty2 in non-small cell lung cancer contributes to tumor malignancy via extracellular signal-regulated kinase pathway-dependent and -independent mechanisms. Mol Cancer Res 5, 509-520 (2007).