簡易檢索 / 詳目顯示

研究生: 羅翊中
Lo, I-Chung
論文名稱: 血小板衍生生長因子調控人類主動脈平滑肌細胞表現凝血酶調節素之分子機轉
Molecular Mechanisms for Platelet-derived Growth Factor-BB-induced Thrombomodulin Expression in Human Vascular Smooth Muscle Cells
指導教授: 江美治
Jiang, Meei-Jyh
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 97
中文關鍵詞: 血小板衍生生長因子凝血酶調節素
外文關鍵詞: Ets-1, Thrombomodulin, PDGF, PI3-kinase
相關次數: 點閱:156下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凝血酶調節素(thrombomodulin, TM)為表現於細胞膜上的第一型膜醣蛋白(type I cell surface glycoprotein),是體內的抗凝血因子 (anticoagulant)之一,在生理止血機制過程中扮演相當重要的角色。在正常的血管壁,內皮細胞表現大量的凝血酶調節素;然而在病態的情況下,如發生動脈硬化的血管壁中,內皮細胞的表現量急遽下降,凝血酶調節素主要是由血管平滑肌細胞所表現。目前對於凝血酶調節素在血管平滑肌細胞中表現的調控與生理意義均不甚清楚。本研究的目的在於探討血管平滑肌細胞表現凝血酶調節素之分子機制。目前已知的蛋白質當中,對血管平滑肌細胞增生與移行刺激效果最大的是血小板衍生生長因子(Platlet-derived growth factor; PDGF)。在血小板衍生生長因子的刺激下,人類主動脈平滑肌細胞增加凝血酶調節素之表現最高可達7.5倍之多,且呈現時間依賴性(time-dependent)與濃度依賴性(dose-dependent)之關係,同時也增加了活化態的蛋白質C (activated protein C)。在體外培養,去內皮的小鼠主動脈,血小板衍生生長因子亦可增加凝血酶調節素之表現達2倍。以cycloheximide停止蛋白質的轉譯,完全抑制血小板衍生生長因子增加凝血酶調節素之訊息RNA (mRNA)的作用,顯示此刺激作用需要有新蛋白的合成。以src kinases, PI3-kinase, mTOR之抑制劑進行前處理,或是在細胞內過量表現不活化的Akt分子,皆可以有效的阻斷血小板衍生生長因子增加凝血酶調節素之作用。相反的,過量表現持續活化的Akt分子則增加凝血酶調節素之表現。在不同長度的啟動子活性分析上,發現血小板衍生生長因子顯著地增加凝血酶調節素啟動子之活性,且核心啟動子片段位於轉譯起始點前-394到-255與-111到-34 bp的位置中。轉錄因子Ets-1的表現會因為血小板衍生生長因子的刺激而增加,且受到PI3-kinase與mTOR分子之調控。利用RNA干擾 (RNA interference)的技術減少Ets-1的表現量有效地降低血小板衍生生長因子所增加之凝血酶調節素。反之,細胞內大量表現Ets-1的結果會增加凝血酶調節素之表現量。利用染色質免疫沉澱技術 (chromatin immunoprecipitation; CHIP)及膠體電泳位移分析法(gel electrophoretic mobility shift assay; EMSA)證實,血小板衍生生長因子顯著地增加Ets-1與凝血酶調節素啟動子之結合。進一步分析後發現,Ets-1與凝血酶調節素啟動子結合的位置主要在 -369 到 -345 bp之間。以上的實驗結果顯示,在血管平滑肌細胞中,血小板衍生生長因子透過src kinases/PI3-kinase/Akt/mTOR訊息傳遞路徑而增加凝血酶調節素之表現,且轉錄因子Ets-1是調控人類凝血酶調節素基因表現的必要因子。

    Thrombomodulin (TM), a potent anticoagulant, is not expressed in quiescent vascular smooth muscle cells (VSMCs). During vascular remodeling, TM is expressed in VSMCs but the regulatory mechanisms remain unclear. This study examined molecular mechanisms for TM expression in VSMCs. Platelet-derived growth factor-BB (PDGF-BB) treatment upregulated TM protein levels by 7.5- fold in time- and dosage-dependent manner in cultured human aortic VSMCs. PDGF-induced TM is functional in activating protein C. In isolated endothelium-denuded aortae, TM expression was stimulated over 2-fold by PDGF treatment. Addition of cycloheximide abolished PDGF-stimulated TM mRNA expression, suggesting that the enhancement of TM transcription requires de novo protein synthesis. The induction was eliminated by pre-incubation with inhibitors of Src, phosphatidylinositol 3-kinase (PI3-kinase) and mammalian target of rapamycin (mTOR) and by overexpressing dominant-negative Akt while overexpressing constitutively active Akt stimulated TM expression. PDGF-BB treatment activated TM promoter and deletion of a sequence segment -394/-255 drastically reduced TM promoter activity whereas that of segment -111/-34 eliminated the remaining activity. Transcription factor E26 transformation-specific sequence-1 (Ets-1) was upregulated by PDGF-BB in PI3-kinase- and mTOR-dependent manner. RNA interference of Ets-1 inhibited PDGF induction of TM, in contrast, overexpressing Ets-1 increased TM expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay detected increased Ets-1 binding to the region located between -369 and -345 bp of TM promoter after PDGF treatment. These results suggest that in VSMC, PDGF-BB stimulates TM expression that is mainly mediated by Ets-1 via Src kinase /PI3-kinase/Akt/mTOR signaling pathway.

    Abbreviations v Abbreviations v Inhibitors used in this dissertation: vii 摘 要 1 Abstract 3 1. Introduction 4 1.1. Thrombomodulin Structure and Function 4 1.2. Thrombomodulin and Inflammation 7 1.3. TM and atherosclerosis 9 1.4. Regulation of TM Expression 12 1.5. Platelet-derived Growth Factor and Vascular Smooth Muscle Cells 15 1.6. Platelet-derived Growth Factor and Phosphatidylinositol 3-kinase Signaling 17 1.7. Ets Transcription factor 18 2. Purpose of the present study 21 3. Materials and Methods 22 3.1. Materials: 22 3.1.1. Animal 22 3.1.2. Chemicals 22 3.1.3. Solution preparation 26 3.2. Methods: 34 3.2.1. Cell Culture 34 3.2.2. Western blotting 34 3.2.3. RNA extraction and Reverse transcriptase polymerase chain reaction (RT-PCR) 38 3.2.4. TM expression in isolated mouse aortae 42 3.2.5. TM-dependent protein C activation assay 42 3.2.6. Adenovirus amplification and infection 43 3.2.7. Transient transfection and luciferase activity assay 43 3.2.8. siRNA knock-down of ETS-1 44 3.2.9 Chromatin immunoprecipitation assay (CHIP) 45 3.2.10. Preparation of Nuclear Extracts 46 3.2.11. Electrophoretic mobility shift assay (EMSA) 47 3.2.12. Ets-1 and thrombomodulin double immunofluorescence 48 3.2.13. Statistic analysis 49 4. Results 50 4.1. Platelet-derived growth factor stimulates thrombomodulin protein expression in human aortic vascular smooth muscle cells in vitro & ex vivo 50 4.2. Effects of tumor necrosis factor- (TNF-) and interleukin-1 (IL-1) on the expression of thrombomodulin in human aortic smooth muscle cells 50 4.3. Platelet-derived growth factor-stimulated thrombomodulin mRNA expression requires new protein synthesis 51 4.4. Platelet-derived growth factor-induced thrombomodulin expression is mediated by PI3-kinase/Akt/mammalian target of rapamycin signaling pathway 51 4.5. Src kinases are required for platelet-derived growth factor-induced PI3-kinase activation and thrombomodulin expression 52 4.6. Extracellular signal-regulated kinase activation partially mediates platelet-derived growth factor-induced thrombomodulin expression 52 4.7. Platelet-derived growth factor regulates thrombomodulin promoter 53 4.8. Ets-1 plays an essential role in platelet-derived growth factor -stimulated thrombomodulin expression 54 4.9. Ets-1 interacts with the thrombomodulin promoter in human aortic smooth muscle cells 55 4.10. The effect of thrombomodulin on thrombin-induced A7r5 migration 55 5. Discussion 57 6. Some major questions to be solved in future research 62 7. References: 65 8. Figures 78 Publications and Conference Abstracts 97 Figure 1. Platelet-derived growth factor (PDGF) stimulates thrombomodulin (TM) expression and activity in human aortic vascular smooth muscle cells (HASMCs). 78 Figure 2. TNF- and IL-1 decrease platelet-derived growth factor (PDGF)- induced TM expression in HASMCs. 80 Figure 3. Platelet-derived growth factor (PDGF)-induced thrombomodulin (TM) mRNA expression time course and inhibition by cycloheximide pretreatment. 81 Figure 4. Effect of LY294002, wortmannin, Akt mutants and rapamycin on platelet-derived growth factor (PDGF)-induced thrombomodulin (TM) expression. 83 Figure 5. Effects of PP2 on platelet-derived growth factor (PDGF)-stimulated Akt phosphorylation and thrombomodulin (TM) expression. 84 Figure 6. Effects of U0126 and SB203580 on platelet-derived growth factor (PDGF)-induced thrombomodulin (TM) expression. 85 Figure 7. Platelet-derived growth factor (PDGF) stimulates thrombomodulin (TM) promoter activity in transiently transfected vascular smooth muscle cells (VSMCs). 86 Figure 8. Analysis of thrombomodulin (TM) promoter elements involved in platelet-derived growth factor (PDGF)-stimulated TM induction in transiently transfected NIH-3T3 cells. 87 Figure 9. The effect of LY294002 on platelet-derived growth factor (PDGF)–stimulated Kruppel-like factor (KLF) 2, 4 and 5 and early growth response-1 (Egr-1) expression in human aortic vascular smooth muscle cells (HASMCs). 88 Figure 10. Ets-1 mediates platelet-derived growth factor (PDGF)-stimulated thrombomodulin (TM) expression. 90 Figure 11. Platelet-derived growth factor (PDGF) stimulates Ets-1 interaction with the thrombomodulin (TM) promoter. 92 Figure 12. Binding of Ets-1 to the thrombomodulin (TM) promoter is enhanced after platelet-derived growth factor (PDGF) treatment. 93 Figure 13. Overexpression of thrombomodulin (TM) suppressed thrombin-induced A7r5 migration. 95 Figure 14. Scheme for the signaling pathway of platelet-derived growth factor-BB (PDGF-BB)-induced thrombomodulin (TM) expression in HASMCs. 96

    1. Owen WG, Esmon CT. Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. J Biol Chem. 1981;256(11):5532-5535.
    2. Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry. 1987;26(14):4350-4357.
    3. Jackman RW, Beeler DL, Fritze L, Soff G, Rosenberg RD. Human thrombomodulin gene is intron depleted: nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc Natl Acad Sci U S A. 1987;84(18):6425-6429.
    4. Sadler JE. Thrombomodulin structure and function. Thromb Haemost. 1997;78(1):392-395.
    5. Jackman RW, Beeler DL, VanDeWater L, Rosenberg RD. Characterization of a thrombomodulin cDNA reveals structural similarity to the low density lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America. 1986;83(23):8834-8838.
    6. Dittman WA, Majerus PW. Structure and function of thrombomodulin: a natural anticoagulant. Blood. 1990;75(2):329-336.
    7. Wood MJ, Sampoli Benitez BA, Komives EA. Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nature structural biology. 2000;7(3):200-204.
    8. Fuentes-Prior P, Iwanaga Y, Huber R, Pagila R, Rumennik G, Seto M, Morser J, Light DR, Bode W. Structural basis for the anticoagulant activity of the thrombin-thrombomodulin complex. Nature. 2000;404(6777):518-525.
    9. Christian S, Ahorn H, Koehler A, Eisenhaber F, Rodi HP, Garin-Chesa P, Park JE, Rettig WJ, Lenter MC. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem. 2001;276(10):7408-7414.
    10. Petersen TE. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 1988;231(1):51-53.
    11. Weisel JW, Nagaswami C, Young TA, Light DR. The shape of thrombomodulin and interactions with thrombin as determined by electron microscopy. J Biol Chem. 1996;271(49):31485-31490.
    12. Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood. 1997;89(2):652-661.
    13. Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern DM, Rosenberg RD, Ziegler R, Nawroth PP. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest. 1998;101(7):1301-1309.
    14. Hofsteenge J, Taguchi H, Stone SR. Effect of thrombomodulin on the kinetics of the interaction of thrombin with substrates and inhibitors. The Biochemical journal. 1986;237(1):243-251.
    15. Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochemical and biophysical research communications. 1990;169(1):177-183.
    16. Taylor FB, Jr., Peer GT, Lockhart MS, Ferrell G, Esmon CT. Endothelial cell protein C receptor plays an important role in protein C activation in vivo. Blood. 2001;97(6):1685-1688.
    17. Xu J, Esmon NL, Esmon CT. Reconstitution of the human endothelial cell protein C receptor with thrombomodulin in phosphatidylcholine vesicles enhances protein C activation. J Biol Chem. 1999;274(10):6704-6710.
    18. Weiler-Guettler H, Christie PD, Beeler DL, Healy AM, Hancock WW, Rayburn H, Edelberg JM, Rosenberg RD. A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state. J Clin Invest. 1998;101(9):1983-1991.
    19. Broze GJ, Jr., Higuchi DA. Coagulation-dependent inhibition of fibrinolysis: role of carboxypeptidase-U and the premature lysis of clots from hemophilic plasma. Blood. 1996;88(10):3815-3823.
    20. Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb Haemost. 1997;78(1):386-391.
    21. Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol. 2000;20(12):2511-2518.
    22. Bourin MC, Boffa MC, Bjork I, Lindahl U. Functional domains of rabbit thrombomodulin. Proc Natl Acad Sci U S A. 1986;83(16):5924-5928.
    23. Bourin MC, Lundgren-Akerlund E, Lindahl U. Isolation and characterization of the glycosaminoglycan component of rabbit thrombomodulin proteoglycan. J Biol Chem. 1990;265(26):15424-15431.
    24. Parkinson JF, Grinnell BW, Moore RE, Hoskins J, Vlahos CJ, Bang NU. Stable expression of a secretable deletion mutant of recombinant human thrombomodulin in mammalian cells. J Biol Chem. 1990;265(21):12602-12610.
    25. Koyama T, Parkinson JF, Sie P, Bang NU, Muller-Berghaus G, Preissner KT. Different glycoforms of human thrombomodulin. Their glycosaminoglycan-dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. European journal of biochemistry / FEBS. 1991;198(3):563-570.
    26. Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Weitz JI, Weiler-Guettler H, Carmeliet P, Collen D. Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood. 1999;93(10):3442-3450.
    27. David-Dufilho M, Millanvoye-Van Brussel E, Topal G, Walch L, Brunet A, Rendu F. Endothelial thrombomodulin induces Ca2+ signals and nitric oxide synthesis through epidermal growth factor receptor kinase and calmodulin kinase II. The Journal of biological chemistry. 2005;280(43):35999-36006.
    28. Olivot JM, Estebanell E, Lafay M, Brohard B, Aiach M, Rendu F. Thrombomodulin prolongs thrombin-induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circ Res. 2001;88(7):681-687.
    29. Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit Care Med. 2004;32(5 Suppl):S254-261.
    30. Esmon CT. Introduction: are natural anticoagulants candidates for modulating the inflammatory response to endotoxin? Blood. 2000;95(4):1113-1116.
    31. Esmon CT. New mechanisms for vascular control of inflammation mediated by natural anticoagulant proteins. J Exp Med. 2002;196(5):561-564.
    32. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem. 2001;276(14):11199-11203.
    33. Lay AJ, Donahue D, Tsai MJ, Castellino FJ. Acute inflammation is exacerbated in mice genetically predisposed to a severe protein C deficiency. Blood. 2007;109(5):1984-1991.
    34. Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI. Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol. 2001;21(9):1531-1537.
    35. Campbell WD, Lazoura E, Okada N, Okada H. Inactivation of C3a and C5a octapeptides by carboxypeptidase R and carboxypeptidase N. Microbiology and immunology. 2002;46(2):131-134.
    36. Ikeguchi H, Maruyama S, Morita Y, Fujita Y, Kato T, Natori Y, Akatsu H, Campbell W, Okada N, Okada H, Yuzawa Y, Matsuo S. Effects of human soluble thrombomodulin on experimental glomerulonephritis. Kidney international. 2002;61(2):490-501.
    37. Van de Wouwer M, Plaisance S, De Vriese A, Waelkens E, Collen D, Persson J, Daha MR, Conway EM. The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost. 2006;4(8):1813-1824.
    38. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med. 2002;196(5):565-577.
    39. Abeyama K, Stern DM, Ito Y, Kawahara K, Yoshimoto Y, Tanaka M, Uchimura T, Ida N, Yamazaki Y, Yamada S, Yamamoto Y, Yamamoto H, Iino S, Taniguchi N, Maruyama I. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115(5):1267-1274.
    40. Shi CS, Shi GY, Hsiao SM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, Wong CH, Wu HL. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661-3670.
    41. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-1143.
    42. Prescott SM, McIntyre TM, Zimmerman GA, Stafforini DM. Sol Sherry lecture in thrombosis: molecular events in acute inflammation. Arterioscler Thromb Vasc Biol. 2002;22(5):727-733.
    43. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999;340(2):115-126.
    44. Shah PK. Plaque disruption and thrombosis. Potential role of inflammation and infection. Cardiology clinics. 1999;17(2):271-281.
    45. Laszik ZG, Zhou XJ, Ferrell GL, Silva FG, Esmon CT. Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol. 2001;159(3):797-802.
    46. Kim AY, Walinsky PL, Kolodgie FD, Bian C, Sperry JL, Deming CB, Peck EA, Shake JG, Ang GB, Sohn RH, Esmon CT, Virmani R, Stuart RS, Rade JJ. Early loss of thrombomodulin expression impairs vein graft thromboresistance: implications for vein graft failure. Circ Res. 2002;90(2):205-212.
    47. Tohda G, Oida K, Okada Y, Kosaka S, Okada E, Takahashi S, Ishii H, Miyamori I. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 1998;18(12):1861-1869.
    48. Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003;278(47):46750-46759.
    49. Waugh JM, Li-Hawkins J, Yuksel E, Kuo MD, Cifra PN, Hilfiker PR, Geske R, Chawla M, Thomas J, Shenaq SM, Dake MD, Woo SL. Thrombomodulin overexpression to limit neointima formation. Circulation. 2000;102(3):332-337.
    50. Li JM, Singh MJ, Itani M, Vasiliu C, Hendricks G, Baker SP, Hale JE, Rohrer MJ, Cutler BS, Nelson PR. Recombinant human thrombomodulin inhibits arterial neointimal hyperplasia after balloon injury. J Vasc Surg. 2004;39(5):1074-1083.
    51. Grinnell BW, Berg DT. Surface thrombomodulin modulates thrombin receptor responses on vascular smooth muscle cells. The American journal of physiology. 1996;270(2 Pt 2):H603-609.
    52. Li J, Garnette CS, Cahn M, Claytor RB, Rohrer MJ, Dobson JG, Jr., Gerlitz B, Cutler BS. Recombinant thrombomodulin inhibits arterial smooth muscle cell proliferation induced by thrombin. J Vasc Surg. 2000;32(4):804-813.
    53. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005;111(13):1627-1636.
    54. Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 1995;86(1):225-233.
    55. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 1985;76(6):2178-2181.
    56. Ishii H, Uchiyama H, Kazama M. Soluble thrombomodulin antigen in conditioned medium is increased by damage of endothelial cells. Thromb Haemost. 1991;65(5):618-623.
    57. Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet. 1999;353(9166):1729-1734.
    58. Conway EM, Nowakowski B, Steiner-Mosonyi M. Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood. 1992;80(5):1254-1263.
    59. Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. J Cell Biol. 1985;101(2):363-371.
    60. Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 1987;35(11):1267-1276.
    61. McCachren SS, Diggs J, Weinberg JB, Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood. 1991;78(12):3128-3132.
    62. Suzuki K, Nishioka J, Hayashi T, Kosaka Y. Functionally active thrombomodulin is present in human platelets. J Biochem (Tokyo). 1988;104(4):628-632.
    63. Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Developmental biology. 1990;140(1):113-122.
    64. Weiler-Guettler H, Aird WC, Rayburn H, Husain M, Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development (Cambridge, England). 1996;122(7):2271-2281.
    65. Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A. 1995;92(3):850-854.
    66. Conway EM, Rosenberg RD. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol Cell Biol. 1988;8(12):5588-5592.
    67. Dittman WA, Kumada T, Majerus PW. Transcription of thrombomodulin mRNA in mouse hemangioma cells is increased by cycloheximide and thrombin. Proc Natl Acad Sci U S A. 1989;86(18):7179-7182.
    68. Maruyama I, Soejima Y, Osame M, Ito T, Ogawa K, Yamamoto S, Dittman WA, Saito H. Increased expression of thrombomodulin on the cultured human umbilical vein endothelial cells and mouse hemangioma cells by cyclic AMP. Thrombosis research. 1991;61(3):301-310.
    69. Weiler-Guettler H, Yu K, Soff G, Gudas LJ, Rosenberg RD. Thrombomodulin gene regulation by cAMP and retinoic acid in F9 embryonal carcinoma cells. Proc Natl Acad Sci U S A. 1992;89(6):2155-2159.
    70. Shi J, Wang J, Zheng H, Ling W, Joseph J, Li D, Mehta JL, Ponnappan U, Lin P, Fink LM, Hauer-Jensen M. Statins increase thrombomodulin expression and function in human endothelial cells by a nitric oxide-dependent mechanism and counteract tumor necrosis factor alpha-induced thrombomodulin downregulation. Blood Coagul Fibrinolysis. 2003;14(6):575-585.
    71. Malek AM, Jackman R, Rosenberg RD, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res. 1994;74(5):852-860.
    72. Sperry JL, Deming CB, Bian C, Walinsky PL, Kass DA, Kolodgie FD, Virmani R, Kim AY, Rade JJ. Wall tension is a potent negative regulator of in vivo thrombomodulin expression. Circ Res. 2003;92(1):41-47.
    73. Ohji T, Urano H, Shirahata A, Yamagishi M, Higashi K, Gotoh S, Karasaki Y. Transforming growth factor beta 1 and beta 2 induce down-modulation of thrombomodulin in human umbilical vein endothelial cells. Thromb Haemost. 1995;73(5):812-818.
    74. Nawroth PP, Handley DA, Esmon CT, Stern DM. Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci U S A. 1986;83(10):3460-3464.
    75. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986;163(3):740-745.
    76. Yu K, Morioka H, Fritze LM, Beeler DL, Jackman RW, Rosenberg RD. Transcriptional regulation of the thrombomodulin gene. J Biol Chem. 1992;267(32):23237-23247.
    77. Tazawa R, Hirosawa S, Suzuki K, Hirokawa K, Aoki N. Functional characterization of the 5'-regulatory region of the human thrombomodulin gene. Journal of biochemistry. 1993;113(5):600-606.
    78. Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA, Jr., Balasubramanian V, Garcia-Cardena G, Jain MK. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96(5):e48-57.
    79. Masamura K, Oida K, Kanehara H, Suzuki J, Horie S, Ishii H, Miyamori I. Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family. Arterioscler Thromb Vasc Biol. 2003;23(3):512-517.
    80. Fu Q, Wang J, Boerma M, Berbee M, Qiu X, Fink LM, Hauer-Jensen M. Involvement of heat shock factor 1 in statin-induced transcriptional upregulation of endothelial thrombomodulin. Circulation research. 2008;103(4):369-377.
    81. Sohn RH, Deming CB, Johns DC, Champion HC, Bian C, Gardner K, Rade JJ. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood. 2005;105(10):3910-3917.
    82. von der Ahe D, Nischan C, Kunz C, Otte J, Knies U, Oderwald H, Wasylyk B. Ets transcription factor binding site is required for positive and TNF alpha-induced negative promoter regulation. Nucleic acids research. 1993;21(24):5636-5643.
    83. DeBault LE, Esmon NL, Smith GP, Esmon CT. Localization of thrombomodulin antigen in rabbit endothelial cells in culture. An immunofluorescence and immunoelectron microscope study. Lab Invest. 1986;54(2):179-187.
    84. Yoshii Y, Okada Y, Sasaki S, Mori H, Oida K, Ishii H. Expression of thrombomodulin in human aortic smooth muscle cells with special reference to atherosclerotic lesion types and age differences. Med Electron Microsc. 2003;36(3):165-172.
    85. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993;362(6423):801-809.
    86. Ma SF, Garcia JG, Reuning U, Little SP, Bang NU, Dixon EP. Thrombin induces thrombomodulin mRNA expression via the proteolytically activated thrombin receptor in cultured bovine smooth muscle cells. J Lab Clin Med. 1997;129(6):611-619.
    87. Traynor AE, Cundiff DL, Soff GA. cAMP influence on transcription of thrombomodulin is dependent on de novo synthesis of a protein intermediate: evidence for cohesive regulation of myogenic proteins in vascular smooth muscle. J Lab Clin Med. 1995;126(3):316-323.
    88. Rabausch K, Bretschneider E, Sarbia M, Meyer-Kirchrath J, Censarek P, Pape R, Fischer JW, Schror K, Weber AA. Regulation of thrombomodulin expression in human vascular smooth muscle cells by COX-2-derived prostaglandins. Circ Res. 2005;96(1):e1-6.
    89. Heldin CH, Westermark B. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev. 1999;79(4):1283-1316.
    90. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003;14(2):91-98.
    91. Seifert RA, Hart CE, Phillips PE, Forstrom JW, Ross R, Murray MJ, Bowen-Pope DF. Two different subunits associate to create isoform-specific platelet-derived growth factor receptors. J Biol Chem. 1989;264(15):8771-8778.
    92. Kelly JD, Raines EW, Ross R, Murray MJ. The B chain of PDGF alone is sufficient for mitogenesis. The EMBO journal. 1985;4(13A):3399-3405.
    93. Ueda M, Becker AE, Kasayuki N, Kojima A, Morita Y, Tanaka S. In situ detection of platelet-derived growth factor-A and -B chain mRNA in human coronary arteries after percutaneous transluminal coronary angioplasty. Am J Pathol. 1996;149(3):831-843.
    94. Sano H, Yokode M, Takakura N, Takemura G, Doi T, Kataoka H, Sudo T, Nishikawa S, Fujiwara H, Nishikawa SI, Kita T. Study on PDGF receptor beta pathway in glomerular formation in neonate mice. Annals of the New York Academy of Sciences. 2001;947:303-305.
    95. Pompili VJ, Gordon D, San H, Yang Z, Muller DW, Nabel GJ, Nabel EG. Expression and function of a recombinant PDGF B gene in porcine arteries. Arterioscler Thromb Vasc Biol. 1995;15(12):2254-2264.
    96. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-241.
    97. Falk E. Pathogenesis of atherosclerosis. Journal of the American College of Cardiology. 2006;47(8 Suppl):C7-12.
    98. Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004;84(3):767-801.
    99. Geng YJ, Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol. 2002;22(9):1370-1380.
    100. Blank RS, Owens GK. Platelet-derived growth factor regulates actin isoform expression and growth state in cultured rat aortic smooth muscle cells. J Cell Physiol. 1990;142(3):635-642.
    101. Corjay MH, Thompson MM, Lynch KR, Owens GK. Differential effect of platelet-derived growth factor- versus serum-induced growth on smooth muscle alpha-actin and nonmuscle beta-actin mRNA expression in cultured rat aortic smooth muscle cells. J Biol Chem. 1989;264(18):10501-10506.
    102. Hayashi K, Takahashi M, Kimura K, Nishida W, Saga H, Sobue K. Changes in the balance of phosphoinositide 3-kinase/protein kinase B (Akt) and the mitogen-activated protein kinases (ERK/p38MAPK) determine a phenotype of visceral and vascular smooth muscle cells. J Cell Biol. 1999;145(4):727-740.
    103. Holycross BJ, Blank RS, Thompson MM, Peach MJ, Owens GK. Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circulation research. 1992;71(6):1525-1532.
    104. Pukac L, Huangpu J, Karnovsky MJ. Platelet-derived growth factor-BB, insulin-like growth factor-I, and phorbol ester activate different signaling pathways for stimulation of vascular smooth muscle cell migration. Exp Cell Res. 1998;242(2):548-560.
    105. Thommes KB, Hoppe J, Vetter H, Sachinidis A. The synergistic effect of PDGF-AA and IGF-1 on VSMC proliferation might be explained by the differential activation of their intracellular signaling pathways. Exp Cell Res. 1996;226(1):59-66.
    106. Krasilnikov MA. Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry. 2000;65(1):59-67.
    107. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-484.
    108. Poon M, Marx SO, Gallo R, Badimon JJ, Taubman MB, Marks AR. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996;98(10):2277-2283.
    109. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995;76(3):412-417.
    110. Roque M, Cordon-Cardo C, Fuster V, Reis ED, Drobnjak M, Badimon JJ. Modulation of apoptosis, proliferation, and p27 expression in a porcine coronary angioplasty model. Atherosclerosis. 2000;153(2):315-322.
    111. Martin KA, Rzucidlo EM, Merenick BL, Fingar DC, Brown DJ, Wagner RJ, Powell RJ. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation. American journal of physiology. 2004;286(3):C507-517.
    112. Jacinto E, Hall MN. Tor signalling in bugs, brain and brawn. Nature reviews. 2003;4(2):117-126.
    113. Nunn MF, Seeburg PH, Moscovici C, Duesberg PH. Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature. 1983;306(5941):391-395.
    114. Karim FD, Urness LD, Thummel CS, Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA, Gunther CV, Nye JA, et al. The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence. Genes & development. 1990;4(9):1451-1453.
    115. Lelievre E, Lionneton F, Soncin F, Vandenbunder B. The Ets family contains transcriptional activators and repressors involved in angiogenesis. The international journal of biochemistry & cell biology. 2001;33(4):391-407.
    116. Tootle TL, Rebay I. Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays. 2005;27(3):285-298.
    117. Wasylyk B, Hagman J, Gutierrez-Hartmann A. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends in biochemical sciences. 1998;23(6):213-216.
    118. Iljin K, Dube A, Kontusaari S, Korhonen J, Lahtinen I, Oettgen P, Alitalo K. Role of ets factors in the activity and endothelial cell specificity of the mouse Tie gene promoter. Faseb J. 1999;13(2):377-386.
    119. Minami T, Kuivenhoven JA, Evans V, Kodama T, Rosenberg RD, Aird WC. Ets motifs are necessary for endothelial cell-specific expression of a 723-bp Tie-2 promoter/enhancer in Hprt targeted transgenic mice. Arterioscler Thromb Vasc Biol. 2003;23(11):2041-2047.
    120. Santiago FS, Khachigian LM. Ets-1 stimulates platelet-derived growth factor A-chain gene transcription and vascular smooth muscle cell growth via cooperative interactions with Sp1. Circ Res. 2004;95(5):479-487.
    121. Logan SK, Garabedian MJ, Campbell CE, Werb Z. Synergistic transcriptional activation of the tissue inhibitor of metalloproteinases-1 promoter via functional interaction of AP-1 and Ets-1 transcription factors. J Biol Chem. 1996;271(2):774-782.
    122. Iwasaka C, Tanaka K, Abe M, Sato Y. Ets-1 regulates angiogenesis by inducing the expression of urokinase-type plasminogen activator and matrix metalloproteinase-1 and the migration of vascular endothelial cells. J Cell Physiol. 1996;169(3):522-531.
    123. Tanaka K, Oda N, Iwasaka C, Abe M, Sato Y. Induction of Ets-1 in endothelial cells during reendothelialization after denuding injury. J Cell Physiol. 1998;176(2):235-244.
    124. Hultgardh-Nilsson A, Cercek B, Wang JW, Naito S, Lovdahl C, Sharifi B, Forrester JS, Fagin JA. Regulated expression of the ets-1 transcription factor in vascular smooth muscle cells in vivo and in vitro. Circulation research. 1996;78(4):589-595.
    125. Kavurma MM, Bobryshev Y, Khachigian LM. Ets-1 positively regulates Fas ligand transcription via cooperative interactions with Sp1. J Biol Chem. 2002;277(39):36244-36252.
    126. Wakiya K, Begue A, Stehelin D, Shibuya M. A cAMP response element and an Ets motif are involved in the transcriptional regulation of flt-1 tyrosine kinase (vascular endothelial growth factor receptor 1) gene. J Biol Chem. 1996;271(48):30823-30828.
    127. Kappel A, Ronicke V, Damert A, Flamme I, Risau W, Breier G. Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood. 1999;93(12):4284-4292.
    128. Chapman SC, Ayala JE, Streeper RS, Culbert AA, Eaton EM, Svitek CA, Goldman JK, Tavar JM, O'Brien RM. Multiple promoter elements are required for the stimulatory effect of insulin on human collagenase-1 gene transcription. Selective effects on activator protein-1 expression may explain the quantitative difference in insulin and phorbol ester action. J Biol Chem. 1999;274(26):18625-18634.
    129. Munaut C, Salonurmi T, Kontusaari S, Reponen P, Morita T, Foidart JM, Tryggvason K. Murine matrix metalloproteinase 9 gene. 5'-upstream region contains cis-acting elements for expression in osteoclasts and migrating keratinocytes in transgenic mice. J Biol Chem. 1999;274(9):5588-5596.
    130. Postigo AA, Sheppard AM, Mucenski ML, Dean DC. c-Myb and Ets proteins synergize to overcome transcriptional repression by ZEB. Embo J. 1997;16(13):3924-3934.
    131. Dandre F, Owens GK. Platelet-derived growth factor-BB and Ets-1 transcription factor negatively regulate transcription of multiple smooth muscle cell differentiation marker genes. Am J Physiol Heart Circ Physiol. 2004;286(6):H2042-2051.
    132. Zhou J, Hu G, Herring BP. Smooth muscle-specific genes are differentially sensitive to inhibition by Elk-1. Mol Cell Biol. 2005;25(22):9874-9885.
    133. Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, Oettgen P. Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest. 2005;115(9):2508-2516.
    134. Ni W, Zhan Y, He H, Maynard E, Balschi JA, Oettgen P. Ets-1 is a critical transcriptional regulator of reactive oxygen species and p47(phox) gene expression in response to angiotensin II. Circ Res. 2007;101(10):985-994.
    135. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W, Jr., Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation. 1994;89(5):2462-2478.
    136. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem. 2002;277(5):3388-3396.
    137. Ito H, Duxbury M, Benoit E, Clancy TE, Zinner MJ, Ashley SW, Whang EE. Prostaglandin E2 enhances pancreatic cancer invasiveness through an Ets-1-dependent induction of matrix metalloproteinase-2. Cancer Res. 2004;64(20):7439-7446.
    138. Nelson JD, Denisenko O, Bomsztyk K. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc. 2006;1(1):179-185.
    139. Lentz SR, Tsiang M, Sadler JE. Regulation of thrombomodulin by tumor necrosis factor-alpha: comparison of transcriptional and posttranscriptional mechanisms. Blood. 1991;77(3):542-550.
    140. Kozma SC, Thomas G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays. 2002;24(1):65-71.
    141. Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I. Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost. 2005;3(8):1569-1576.
    142. Li YH, Liu SL, Shi GY, Tseng GH, Liu PY, Wu HL. Thrombomodulin plays an important role in arterial remodeling and neointima formation in mouse carotid ligation model. Thromb Haemost. 2006;95(1):128-133.
    143. Isermann B, Hendrickson SB, Zogg M, Wing M, Cummiskey M, Kisanuki YY, Yanagisawa M, Weiler H. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest. 2001;108(4):537-546.
    144. Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clowes AW. Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation. Circ Res. 2005;96(2):172-179.
    145. Oettgen P. Regulation of vascular inflammation and remodeling by ETS factors. Circ Res. 2006;99(11):1159-1166.
    146. Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D, Milanini-Mongiat J, Pages G, O'Rourke DM, Bernhard E, Maity A. Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Molecular biology of the cell. 2004;15(11):4841-4853.
    147. Raines EW. PDGF and cardiovascular disease. Cytokine Growth Factor Rev. 2004;15(4):237-254.
    148. Hegner B, Lange M, Kusch A, Essin K, Sezer O, Schulze-Lohoff E, Luft FC, Gollasch M, Dragun D. mTOR regulates vascular smooth muscle cell differentiation from human bone marrow-derived mesenchymal progenitors. Arterioscler Thromb Vasc Biol. 2009;29(2):232-238.
    149. Kamimura M, Bea F, Akizawa T, Katus HA, Kreuzer J, Viedt C. Platelet-derived growth factor induces tissue factor expression in vascular smooth muscle cells via activation of Egr-1. Hypertension. 2004;44(6):944-951.
    150. Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood. 1990;76(10):2024-2029.
    151. Wu HL, Lin CI, Huang YL, Chen PS, Kuo CH, Chen MS, Wu GC, Shi GY, Yang HY, Lee H. Lysophosphatidic acid stimulates thrombomodulin lectin-like domain shedding in human endothelial cells. Biochemical and biophysical research communications. 2008;367(1):162-168.
    152. Lohi O, Urban S, Freeman M. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol. 2004;14(3):236-241.

    下載圖示 校內:2010-03-23公開
    校外:2010-03-23公開
    QR CODE