| 研究生: |
黃銘揚 Huang, Ming-Yang |
|---|---|
| 論文名稱: |
矽基板製備陽極氧化鋁核殼結構單晶二硒化銅銦二極體及光感測器應用 Single crystal Core-shell CuInSe2 diode synthesis for photodetector with AAO template on silicon substrate |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 陽極氧化鋁模板 、銅銦硒奈米柱二極體 、核殼結構 、光感測器 |
| 外文關鍵詞: | Thin film AAO template, CuInSe2 nanorod, core-shell, photodetector |
| 相關次數: | 點閱:98 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文期望利用薄膜式陽極氧化鋁模板製備出核殼結構單晶二硒化銅銦奈米柱的元件。期望改善塊材式陽極氧化鋁易碎良率低的問題,並且以低成本且低溫的電化學沉積技術,製備大面積的奈米柱陣列,利用奈米柱結構相較於平面式結構其高比表面積的優勢,配合核殼結構的改善,達到更佳的光電效果,爾後應用於各項光感測器的元件當中。
本篇論文成功製備出單晶二硒化銅銦奈米柱,以電鍍液pH1.7、電鍍電壓-1.2V為最佳參數,其製備完成之CIS晶粒大小為43.4nm,並且以(112)晶相為優選的單晶結構,所製備完成的CIS/n-Si二極體具備整流特性在2V為22.2mA/cm2,在-2V為-1.72x10-4 mA/cm2,再經過核殼結構的改善過後,在2V的電流提升到1270 mA/cm2。而最佳電鍍條件的CIS二極體,應用於光感測方面,其光響應度為1.57A/W,再經過核殼結構的改善後提升到12.76A/W,有確實改善光響應度且達到光感測的效果。
In recent years, one noticeable concept of automobile electronics is autopilot. LiDAR is the main technique of autopilot for sensing obstacles around the automobiles which consists of laser, photodetector, and images processing.
In this study, we utilize nanorod structure to fabricate a highly sensitive photodetector to achieve the multi-point detection like LiDAR. We realize the photodetector by electrochemical deposition assisted with a thin film anodic aluminum oxide(AAO) template made by anodic polarization process. The pore of the AAO template is further widen and smooth with the step down voltage anodization and KCl cathodic polarization. CuInSe2(CIS) is a prominent material for optical absorption, therefore we modulate the pH value of plating solution and plating voltage for manufacturing high quality single crystal CIS nanorod through the AAO template.
The best plating pH value and plating voltage for CIS nanorod in this study is 1.7 and -1.2V which results in a single crystal structure CIS nanorod with grain size 43.4nm after rapid thermal annealing(RTA) process.
CIS/n-silicon diode exhibits a tremendous rectifying characteristic of forward current density 22.2 mA/cm2 and reverse current density -1.72x10-4 mA/cm2. CIS/n-silicon diode photoresponsivity enhances from 1.57 to 12.76A/W with ITO core-shell structure.
This work demonstrates a low cost method to fabricate a nanorod structure photodetector with highly photosensitivity.
【1】 Carol,“綠色能源的最大潛力股-太陽能“,股感知識庫 ,台灣,2016
【2】 曾信榮、許千樹,“發光二極體“,科學發展 451期,台灣,2010
【3】 趙中興,“感測器“,全華圖書,台灣,2006
【4】 楊德仁,“太陽能電池材料“,五南圖書出版股份有限公司,台灣, 2008。
【5】 粘群、粘金重,“薄膜太陽能電池研究進展簡介“,崇越科技股份有限公司,台灣,2009。
【6】 田民波、呂輝宗、溫坤禮,“白光LED照明技術“,五南圖書出版股份有限公司,台灣,2011。
【7】 Eisele, W., et al. "New cadmium-free buffer layers as heterojunction partners on Cu (In, Ga)(S, Se)/sub 2/thin film solar cells." Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE. IEEE, 2000.
【8】 Stanbery, Billy J. "Copper indium selenides and related materials for photovoltaic devices." Critical reviews in solid state and materials sciences 27.2 (2002): 73-117.
【9】 Tambo, H., and H. Asahi. "Control of GaN nanorod diameter by changing growth temperature during molecular-beam epitaxy." Journal of Crystal Growth 383 (2013): 57-62.
【10】 Ishizawa, Shunsuke, Akihiko Kikuchi, and Katsumi Kishino. "Selective growth of GaN nanocolumns on predeposited Al patterns by rf‐plasma‐assisted molecular‐beam epitaxy." physica status solidi (c) 5.6 (2008): 1879-1882.
【11】 Li, Shunfeng, et al. "Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy." Applied Physics Letters 101.3 (2012): 032103.
【12】 Keller, F., M. S. Hunter, and D. L. Robinson. "Structural features of oxide coatings on aluminum." Journal of the Electrochemical Society 100.9 (1953): 411-419.
【13】 劉志毅,2003,國立台灣大學物理研究所博士論文
【14】 Taşaltın, Nevin, et al. "Simple fabrication of hexagonally well-ordered AAO template on silicon substrate in two dimensions." Applied Physics A 95.3 (2009): 781-787.
【15】 Shin, Sangwoo, et al. "Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition." Journal of Materials Chemistry 21.44 (2011): 17967-17971.
【16】 Chen, Po-Lin, et al. "Anodic aluminum oxide template assisted growth of vertically aligned carbon nanotube arrays by ECR-CVD." Diamond and related materials 13.11-12 (2004): 1949-1953.
【17】 Chen, Po-Lin, et al. "Tube number density control of carbon nanotubes on anodic aluminum oxide template." Diamond and related materials 14.3-7 (2005): 804-809.
【18】 Zhang, X‐Y., et al. "Synthesis of ordered single crystal silicon nanowire arrays." Advanced Materials 13.16 (2001): 1238-1241.
【19】 Sander, Melissa S., and L‐S. Tan. "Nanoparticle arrays on surfaces fabricated using anodic alumina films as templates." Advanced functional materials 13.5 (2003): 393-397.
【20】 Shin, Sangwoo, et al. "Tuning the morphology of copper nanowires by controlling the growth processes in electrodeposition." Journal of Materials Chemistry 21.44 (2011): 17967-17971.
【21】 Law, Matt, et al. "ZnO− Al2O3 and ZnO− TiO2 core− shell nanowire dye-sensitized solar cells." The Journal of Physical Chemistry B 110.45 (2006): 22652-22663.
【22】 Sander, Melissa S., et al. "Fabrication of High‐Density, High Aspect Ratio, Large‐Area Bismuth Telluride Nanowire Arrays by Electrodeposition into Porous Anodic Alumina Templates." Advanced Materials 14.9 (2002): 665-667.
【23】 Masuda, Hideki, and Kenji Fukuda. "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina." science 268.5216 (1995): 1466-1468.
【24】 Lee, Woo, et al. "Fast fabrication of long-range ordered porous alumina membranes by hard anodization." Nature materials 5.9 (2006): 741.
【25】 Li, A. P., et al. "Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina." Journal of applied physics 84.11 (1998): 6023-6026.
【26】 鄭才欲,2004,國立暨南大學電機工程研究所碩士論文
【27】 Li, Feiyue, Lan Zhang, and Robert M. Metzger. "On the growth of highly ordered pores in anodized aluminum oxide." Chemistry of materials 10.9 (1998): 2470-2480.
【28】 Nelson, J. C., and R. A. Oriani. "Stress generation during anodic oxidation of titanium and aluminum." Corrosion Science 34.2 (1993): 307-326.
【29】 Thompson, G. E. "Porous anodic alumina: fabrication, characterization and applications." Thin solid films 297.1-2 (1997): 192-201.
【30】 Anderson, Timothy J., and B. J. Stanbery. Processing of CuInSe2-Based Solar Cells: Characterization of Deposition Processes in Terms of Chemical Reaction Analyses. Final Report, 6 May 1995-31 December 1998. No. NREL/SR-520-30391. National Renewable Energy Lab., Golden, CO (US), 2001.
【31】 Haug, Franz-Josef. "Development of Cu (In, Ga) Se2 superstrate thin film solar cells." Swiss Federal Institute of Technology Zürich, Diss (2001).
【32】 Müller, J., J. Nowoczin, and H. Schmitt. "Composition, structure and optical properties of sputtered thin films of CuInSe2." Thin Solid Films 496.2 (2006): 364-370.
【33】 Calixto, M. Estela, et al. "Controlling growth chemistry and morphology of single-bath electrodeposited Cu (In, Ga) Se2 thin films for photovoltaic application." Journal of the Electrochemical Society 153.6 (2006): G521-G528.
【34】 Guillén, C., and J. Herrero. "Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors." Solar energy materials and solar cells 73.2 (2002): 141-149.
【35】 Sone, Masato, Tso-Fu Mark Chang, and Hiroki Uchiyama. "Crystal growth by electrodeposition with supercritical carbon dioxide emulsion." Advanced Topics on Crystal Growth. InTech, 2013.
【36】 戴婉如,利用陽極氧化鋁模板製備CuInSe2核殼結構元件之研究,國立成功大學微電子所碩士論文,2017
【37】 Paunovic, Milan, and Mordechay Schlesinger. Fundamentals of electrochemical deposition. Vol. 45. john wiley & sons, 2006.
【38】 Pletcher, Derek, and Frank C. Walsh. Industrial electrochemistry. Springer Science & Business Media, 2012.
【39】 Hu, Chenming. Modern semiconductor devices for integrated circuits. Vol. 1. Upper Saddle River, NJ: Prentice Hall, 2010.
【40】 Fan, Zhiyong, et al. "Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates." Nature materials 8.8 (2009): 648.
【41】 B. D. Cullity, “Elements of X-ray Diffraction” (1956)
【42】 林麗君,“X光繞射原理及其應用”,工程材料86期,1994
【43】 Zheng, Zhaoqiang, Jiandong Yao, and Guowei Yang. "Self-Assembly of the Lateral In2Se3/CuInSe2 Heterojunction for Enhanced Photodetection." ACS applied materials & interfaces 9.8 (2017): 7288-7296.
【44】 Hsin, Cheng-Lun, et al. "Growth of CuInSe2 and In2Se3/CuInSe2 nano-heterostructures through solid state reactions." Nano letters 11.10 (2011): 4348-4351.
【45】 Feng, Wei, et al. "Solid-state reaction synthesis of a InSe/CuInSe2 lateral p–n heterojunction and application in high performance optoelectronic devices." Chemistry of Materials27.3 (2015): 983-989.
校內:2023-07-01公開