簡易檢索 / 詳目顯示

研究生: 朱釋唯
Jhu, Shih-Wei
論文名稱: 矩形鰭片置於具兩開孔之矩形外殼內之自然對流熱傳特性研究
Study on Natural Convection Heat Transfer Characteristics of Rectangular Fins in Rectangular Enclosure with Two Openings
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 逆算法垂直板鰭式熱沉封閉矩形外殼自然對流鰭片排列
外文關鍵詞: Inverse method, Vertical plate heat sink, Rectangular enclosure, natural convection, Fin array
相關次數: 點閱:141下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限差分法、最小平方法之逆算法搭配實驗溫度量測值來估算板鰭式熱沉垂直置放於封閉矩形外殼內之熱傳係數與散熱量,並以CFD探討鰭片間之空氣溫度與流場速度分佈情形。由於鰭片上的熱傳係數並非均勻分佈,故於進行反算前,須將鰭片分割為N個小區域,而後把熱電偶安裝於小區域上以量測不同條件下之量測位置的溫度。再以商用軟體FLUENT搭配各種流動模式及適當格點數目求取各量測點之鰭片溫度、鰭片上之熱傳係數。除此之外,在相同條件下由各種流動模式所求得之數值結果將相互比較,以探討其差異性。為求得本研究較正確之熱傳及流體流動特性,選用適當的流動模式及網格格點數所求得之鰭片熱傳係數,須盡可能接近實驗溫度量測值及逆算結果。結果顯示,流動模式及網格點數目對數值結果之影響不容忽視,實驗方面若將鰭片置於具有孔洞之封閉矩形外殼內,會因煙囪效應而增加自然對流效果,而鰭片上的平均熱傳係數會隨鰭片間距的增加而提高且隨著鰭片高度的增加而減少。此外對於鰭片排列方式的不同也有明顯差異,鰭片交錯式排列所得平均熱傳係數均高於直列式排列。為了驗證所得結果之可靠性及可用性,所求得熱傳係數之逆算結果將與先前結果或其他相關文獻之經驗式相比較。

    In this paper, finite difference method, least square method and inverse method combined with experimental temperature data are used to estimate the heat transfer coefficient and the heat dissipating capacity of the plate-fin heat sinks which is placed vertically. Furthermore, CFD is used to discuss the air temperature and the flow field speed between the heat sinks. Due to the heat transfer coefficient of the plate-fin heat sinks is not uniform, so the plate-fin is required to divide into several regions. After that, install thermocouples on each small region, and measure the temperature of these places. Besides, any kinds of the various models will be compared with the numerical results on the same condition for find out the differences. To obtain correct heat transfer and fluid flow characteristics of plate-fin heat sinks, choose appropriate flow model and number of grid points is very important. The results indicate that the flow model and the number of grid points have a great influence on the numerical analysis. From the experiment point of view, the average heat-transfer coefficient will increase as the fin pitch increase but will decrease as the fin height increase. Besides, it will be significant affection in the arrangement of the heat sink. In terms of the heat transfer coefficient, Stagger array is higher than the in-line array. In order to verify the reliability of predicted results of this paper, the present study also in comparison with the empirical correlations of other relevant literature.

    摘要 I 誌 謝 VI 表目錄 X 圖目錄 XI 符號說明 XIII 第1章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-3 研究目的 7 1-4 研究重點與論文架構 8 第2章 逆算法理論分析 10 2-1 簡介 10 2-2 建立數學模型 11 2-3 鰭片上之逆向方法 12 第3章 實驗方法 18 3-1 簡介 18 3-2 實驗設備 19 3-2-1 實驗試件 19 3-2-2 矩形外殼 20 3-2-3 溫度擷取系統 20 3-3 實驗組別 21 3-4 實驗步驟 21 第4章 數值方法 27 4-1 簡介 27 4-2 假設條件 28 4-3 流動模式 28 4-4 邊界條件 33 4-5 數值求解 35 4-5-1 流動模式的選定 36 4-5-2 網格測試 38 第5章 結果與討論 50 5-1 實驗結果與分析 50 5-1-1 鰭片間距與高度對所求得結果之影響 51 5-1-2 鰭片為直列式與交錯式陣列之所得結果的比較 53 5-1-3 相關文獻之比較 54 5-2 數值結果與分析 57 5-2-1 鰭片間距與高度對所求得結果之影響 57 5-2-2 鰭片直列式與交錯式陣列之所得結果的比較 59 第6章 綜合結論與未來展望 82 6-1 綜合結論 82 6-2 未來發展與建議 83 參考文獻 84

    [1]T. E. Schmidt, Heat transfer calculations for extended surfaces, Refri. Eng., pp. 351-357, 1949.
    [2]W. Elenbass, Heat dissipation of parallel plates by free convection, Physica, vol. 9, pp. 2-28, 1942.
    [3]E. M. Sparrow, A. Haji-Sheikh, T. S. Lundgren, The inverse problem in transient heat conduction, J. Appl. Mech., Vol.31, pp. 369-375, 1964.
    [4]D. R. Haper, W. B. Brown, Mathematical equations for heat conduction in the fins of air cooled engines, N. A. C. A. Rept, pp. 158, 1922.
    [5]F. G. Hewitt, Heat Exchanger Design Handbook, Begell House, Inc., pp. 3340, 1998.
    [6]J. R. Bodoia, J. F. Osterle, The Development of free convection between heated vertical plates, ASME J.Heat Transfer, Vol. 84, pp. 40-43, 1962.
    [7]J. Deans, J. Neale, The use of effectiveness concepts to calculate the thermal resistance of parallel plate heat sinks, Heat Transfer Eng., Vol. 27, pp. 56-67, 2006.
    [8]A. de Lieto Vollaro, S. Grignaffini, F. Gugliermetti, Optimum design of vertical rectangular fin arrays, Int. J. Therm. Sci., vol. 38, pp.525-529, 1999.
    [9]F. Harahap, H. Lesmana, I. K. T. Arya Sume Dirgayasa, Measurements of heat dissipation from miniaturized vertical rectangular fin arrays under dominant natural convection conditions, Heat Mass Transfer, vol. 42, pp.1025-1036, 2006.
    [10]K. E. Starner, H. N. McManus, An experimental investigation of free-convection heat transfer from rectangular fin arrays,” ASME J. Heat Transfer, Vol. 85, pp. 273-277, 1963.
    [11]C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger design: optimum uniform separation between rectangular fins protruding from a vertical rectangular base, Applied Energy, vol. 19, pp. 287-299, 1985.
    [12]H. sato and k. kishinami, Temperature distribution and heat transfer from distributed heat sources mold in a vertical plate set in still air, Int. Symp. on Transport Phenomena in Thermal Control Taipei Aug., pp. 14-18, 1988.
    [13]I. Tari, M. Mehrtash, Natural convection heat transfer from horizontal and slightly inclined plate-fin heat sinks, J. Appl. Therm. Eng., vol. 61, pp. 728-736, 2013.
    [14]N.C. Markatos, K.A. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transfer, vol. 27, pp. 755-772, 1984.
    [15]S.A. Nada, Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, Int. J. Heat Mass Transfer, vol. 50, pp. 667-679, 2007.
    [16]E.M. Sparrow, B.R. Baliga. S.V. Patankar, Forced convection heat transfer from a shrouded fin arrays with and without tip clearance, ASME J. Heat Transfer, vol. 100, pp. 572–579, 1978.
    [17]E. Yu, Y. K. Joshi, Heat transfer in discretely heated side vented compact enclosures by combined conduction, natural convection, and radiation, ASME J. Heat Transfer, vol. 121, pp.1002-1010, 1999.
    [18]G. Guglielmini, E. Nannei, G. Tanda, Natural convection and radiation heat transfer from staggered vertical fins, Int. J. Heat Mass Transfer, vol. 30, pp. 1941-1948, 1987.
    [19]E.M. Sparrow, C. Prakash, Enhancement of natural convection heat transfer by a staggered arrays of discrete vertical plates, ASME J. Heat Transfer, vol. 102, pp. 215–220, 1980.
    [20]M. Ahmadi, M. F. Pakdaman, M. Bahrami, Pushing the limits of vertical naturally-cooled heatsinks; Calculations and design methodology, Int. J. Heat Mass Transfer, vol. 87, pp. 11-23, 2015.
    [21]N.M. Alnajem, M.N. Özişik, A direct analytical approach for solving linear inverse heat conduction problems, ASME J. Heat Transfer, vol 107, pp. 700-703, 1985.
    [22]J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, vol. 62, pp. 46-51, 1962.
    [23]J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering Design, vol. 7, pp. 170-178, 1968.
    [24]J.V. Beck, B. Litkouhi, C.R. Stclair, Efficient sequential solution of nonlinear inverse heat-conduction problem, Numer. Heat Transfer, vol. 5, pp. 275-286, 1982.
    [25]S. Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution, Int. J. Heat Mass Transfer, vol. 31, pp. 127-135, 1996.
    [26]E. Velayati, M. Yaghoubi, Numerical study of convection heat transfer from an arrays of parallel bluff plates, Int. J. Heat Fluid Flow, vol. 26, pp. 80-91, 2005.
    [27]H. T. Chen, Y. S. Lin, P. C. Chen, J. R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer, vol. 100, pp. 320-331, 2016.
    [28]H. T. Chen, Y. J. Chiu, C. S. Liu, J. R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer, vol. 109, pp. 378-392, 2017.
    [29]M. N. Özişik, H. R. B. Orlande, Inverse heat transfer: Fundamentals and applications, Taylor & Francis, New York, 2000.
    [30]O. M. Alifanov, Inverse heat transfer problem, Springer-Verlag, Berlin , 1994.
    [31]J. V. Beck, B. Blackwell, C. R. St. Clair, Inverse heat conduction: ill-posed problems, Wiley Interscience, New York, 1985.
    [32]A.N. Tikhonov, V.Y. Arsenin, Solution of Ill-posed Problems, V. H. Winston & Sons, Washington, DC, 1977.
    [33]V. S. Arpaci, Introduction to Heat Transfer, Prentice Hall, New Jersey, pp. 580, 1999.
    [34]A. Bejan, Heat Transfer, John Wiley & Sons, Inc., New York, pp. 53-62, 1993.
    [35]F. E.M. Saboya, E.M. Sparrow, Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96, pp. 265-272, 1974.
    [36]H. T. Chen, J. C. Chou, Investigation of natural-convection heat transfer coefficient from the vertical fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 49, pp. 3034-3044, 1993.
    [37]徐國軒,以逆算法估算自然對流下之垂直矩形鰭片上的熱傳特性,國立成功大學機械工程學系,碩士論文,2008。
    [38]賴詩婷,矩行鰭片陣列於具開孔矩形外殼內之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2012。
    [39]FLUENT Dynamic Software, FLUENT, Lehanon, NH, 2010.
    [40]B.E. Launder, D. Spalding, The numerical computation of turbulent flows, Comp. Meth. Appl. Mech. Engng., vol. 3, pp. 269-289, 1974.
    [41]V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4, pp 1510-1520, 1992.
    [42]F.P. Incropera, D.P. Dewitt, Introduction to Heat Transfer, 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE