簡易檢索 / 詳目顯示

研究生: 陳至瑋
Chen, Chih-Wei
論文名稱: 混合相鐵酸鉍薄膜的介電機制轉換研究
Study on transformation of dielectric mechanisms of BiFeO3 Films with mixed-phase structures
指導教授: 陳宜君
Chen, Yi-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 65
中文關鍵詞: 介電機制
外文關鍵詞: Dielectric mechanism
相關次數: 點閱:67下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • BiFeO3 (BFO)薄膜的磁電耦與高自發極化特性。在一般情況下BFO具有斜方晶結構,然而在基板應力的影響下BFO薄膜可同時有菱長晶與長方晶兩種相態。因此本研究主要利用量測不同型式頻譜的方式,去討論長方晶(T)與混合相(T+R)的鐵酸鉍樣品內部介電機制的差異,同時每個機制都可以電路等效,再利用變溫和變電壓的方式確認樣品機制的演變。結果顯示我們可將室溫中的T-BFO以導電性的弛豫電路等效而T+R-BFO除了T相所貢獻的導電弛豫系統外,另外需要加上T與R介面上的介電弛豫電路等效。當我們對系統加反向電壓時,因為T+R相轉為純T相,造成T+R介面介電機制貢獻減少與整體介電常數的降低。在降溫實驗中,發現到T相的漏電流會隨著溫度的降低而減少,但T+R的介面電容卻會增加。因此我們可以透過頻譜術的方式,將混相樣品的晶相貢獻,一個一個分開,達到各別晶相可析的結果。

    Abstract
    BiFeO3 (BFO) films which possess the coupling effect between ferromagnetism and ferroelectricity and high polarization have attracted much attention. In general, the BiFeO3 (BFO) films have the rhombohedral phases. Under the compressive stress of the substrate, the strained rhombohedral (R) phase will transform to the tetragonal (T) phase. In this study, we used the impedance spectroscopy to discuss the dielectric mechanism of T-BFO and T+R-BFO. Moreover, we investigated the variation of the mechanisms represented by equivalent circuit elements with different DC bias and temperature. Results show that the dielectric contributions of T-BFO are due to conducting system dispersion (CSD), while those of the T+R-BFO films are equivalent to the combination of conducting system dispersion (CSD) and dielectric system dispersion (DSD). We conclude the CSD is originated from the T polarization state and the DSD is originated from the interface of T+R polarization state. Therefore, the dielectric constant of T+R-BFO would reduce under the electric field, because the R phase orientate to T phase in the interface. In contrast to the dielectric constant reduction of T+R-BFO under bias, the dielectric constant would increase on the cooling system. By using the impedance spectrum, we explicitly analyzed each polarization state in the T+R-BFO.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VI 第一章 緒論 1 第二章 文獻回顧 3 2.1 多鐵性材料 3 2.1.1 多鐵性材料簡介 3 2.1.2 多鐵性的來源 4 2.2 鐵電材料 7 2.2.1 鐵電材料理論 7 2.2.2 鐵電電滯曲線 7 2.2.3鐵酸鉍材料介紹 8 2.3介電特性 11 2.3.1 介電材料 11 2.3.2 介電常數 11 2.3.3 介電弛豫機制 12 2.3.4 弛豫理論的電路模型 14 2.3.5 雙位能井的弛豫模型 17 2.3.6 介電材料的電極化機制 19 2.4鐵電材料的介電研究 21 第三章 實驗方法 26 3.1儀器介紹 26 3.2阻抗分析儀量測原理 26 3.3儀器裝置與接線 29 3.4樣品資訊 30 3.5實驗方法 31 3.6實驗設計 33 第四章 結果與討論 34 4.1應力調制下鐵酸鉍薄膜的弛豫機制 34 4.1.1 長方晶相鐵酸鉍薄膜的頻譜 34 4.1.2 混合相鐵酸鉍薄膜的頻譜 37 4.1.3 等效電路模型 40 4.2 弛豫機制隨溫變下的改變 45 4.2.1 混合相鐵酸鉍薄膜頻譜隨溫變下的演變 45 4.2.2 等效線路模型 47 4.3弛豫機制變電壓下的改變 50 4.3.1 混合相鐵酸鉍薄膜頻譜正電壓探討 50 4.3.2 混合相鐵酸鉍薄膜頻譜負電壓探討 53 4.3.3 等效線路模型探討 57 4.4極化實驗 58 4.4.1 混合相鐵酸鉍薄膜電滯曲線的探討 58 第五章 結論 60 參考文獻 61

    參考文獻
    [1] Debye, P., Polar Moleculars. Chemistry AND INDUSTRY, 1929:p. 172.
    [2] Cole, K.S. and R.H. Cole, Dispersion and Abasorption. Journal of Chemical Physics, 1941. 9( ): p. 341-351.
    [3] G Burns, Solid State Physics, 1998.p. 450-486.
    [4] Gene H. Haertling, J. Am. Ceram. Soc. 82, 4 797–818 (1999).
    [5] W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 17 (2006)
    [6] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, Nature Materials 5, 825-829 (2006).
    [7] Ramesh and Nicola A. Spaldin, Nature Materials 6, 21-29 (2007).
    [8] T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, and M. Barry, A. Doran, K. Lee, M. P. Cruz and R. Ramesh, App. Phys. Lett. 90, 123104 (2007).
    [9] Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, Arantxa Fraile-Rodríguez, Andreas Scholl, Shan X. Wang and R. Ramesh, Nature Materials 7, 478-482 (2008).
    [10] F. Zavaliche, R. R. Das, D. M. Kim, C. B. Eom, S. Y. Yang, P. Shafer, and R. Ramesh, App. Phys. Lett. 87, 182912 (2005).
    [11] Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003. 299(5613): p. 1719-1722.
    [12] C. H. Ahn,K. M. Rabe, J.-M. Triscone, Science, 303, 488 (2004).

    [13] T. Tybell, P. Paruch, T. Giamarchi and J.-M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).
    [14] Nicola A. Hill, J. Phys. Chem. B 104, 6694-6709 (2000).
    [15] Srinivasan G, Hayes R and Bichurin M I, Solid State Commun. 128 261 (2003).
    [16] Smolenskii G. A. and Chupis I. E., Sov. Phys. Usp.25 475 (1982).
    [17] Schmid H., Int. J. Magn. 4 337 (1973).
    [18] Hill NA, Filippetti A.J, Magn Mater 976, 242-245 (2002).
    [19] Baettig P. and Spaldin N. A., Appl. Phys. Lett. 86 012505 (2005).
    [20] Van Aken B. B. and Palstra T. T. M., Phys. Rev. B 69 134113
    (2004).
    [21] Van Aken B. B., Palstra T. T. M., Filippetti A. and Spaldin N. A.,
    Nat. Mater. 3, 164 (2004).
    [22] Goto T., Kimura T., Lawes G., Ramirez A. P. and TokuraY,.
    [23] Phys. Rev. Lett. 92 257201 (2004).
    [24] Efremov D. V., van den Brink J. and Khomskii D. I., Nat.Mater. 3 853 (2004).
    [25] Robert T. Smith, Gary D. Achenbach, Robert Gerson and W. J.
    James, J. Appl. Phys. 39, 1 (1968).
    [26] Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire and
    Judith L. MacManus-Driscoll, App. Phys. Lett. 86, 062903 (2005).
    [27] N. A. Hill,“Density Functional Studies of Multiferroic Magnetoelectric”, Annu. Rev. Matter. Res. 32, 1 (2002)
    [28] Dzyaloshinskii I E,“On the maheto-electric effect in antiferromagnets, Sov. Phys.-JETP 10 628 (1959).
    [29] Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
    [30] F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, App. Phys. Lett. , 87, 252902 (2005).
    [31]柯政宏, 鐵酸鉍(111)磊晶薄膜鐵電電域之動態鬆弛, in Physics. 2009, NCKU: Tainan, Taiwan.
    [32] Zeches, R.J., et al., A Strain-Driven Morphotropic Phase Boundary in BiFeO3. Science, 2009. 326(5955): p. 977-980.
    [33] Wang, J., et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science, 2003. 299(5613): p. 1719-1722.
    [34]方俊鑫 and 殷之文, 電介質物理學. 2000: 科學出版社.
    [35] Cole, K.S. and R.H. Cole, Dispersion and Absorption in Dielectric 1941. 9: p. p.341-351.
    [36] Barsoukov, E. and J.R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Applicatipns. 2005, USA.
    [37] Hipple, A.V., Dielectric and waves. 2nd ed. 1996, London. 1-86.
    [38] Burfoot, J.C. and G.W. Taylor, Polar dielectrics and their applications 1979, Los Angles, CA: University of California.
    [39] Sinclair, D.C. and A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO[sub 3] showing positive temperature coefficient of resistance. Journal of Applied Physics, 1989. 66(8): p. 3850-3856.
    [40] Eerenstein, W., et al., - Impedance spectroscopy of epitaxial multiferroic thin films. 2007. 75.245111.
    [41] Irvine, J.T.S., D.C. Sinclair, and A.R. West, Electroceramics: Characterization by Impedance Spectroscopy. Advanced Materials, 1990. 2(3): p. 132-138.
    [42] Liu, G.Z., et al., Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors. Applied Physics Letters, 2008. 92(12).
    [43] Agilent Technologies Impedance Measurement Handbook. 2003.
    [44] 戴湘華, 鐵酸鉍(100)磊晶薄膜的電域動態移動, in Physics. 2009, NCKU: Tainan, Taiwan.

    下載圖示 校內:2012-08-31公開
    校外:2012-08-31公開
    QR CODE