簡易檢索 / 詳目顯示

研究生: 李桂芬
Li, Guei-Fen
論文名稱: 用理論計算對Titanatranes和Vanadatranes內N→M(M=Ti,V)Dative Bond之研究
Theoretical Studies of N→M(M=Ti,V) Dative Bond in Titanatranes and Vanadatranes
指導教授: 王小萍
Wang, Shao-Pin
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 143
中文關鍵詞: 天然鍵性軌域極性配位共價鍵
外文關鍵詞: vanadatranes, titanatranes, atranes
相關次數: 點閱:129下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用量子計算和NBO分析來研究Z-Ti[-Y(CH2)2-]3N和Z-V[-Y(CH2)2-]3N等化合物的結構及電子組態,其中Z≡F、Cl、Br、I、OH、NH2、CH3,Y≡O、S、CH2、NCH3。在本研究過程當中,發現所有的Z-Ti[-Y(CH2)2-]3N和Z-V[-Y(CH2)2-]3N化合物之中,Z…Ti…N和Z…V…N之間具有三中心四電子(3c-4e)鍵結,而且N原子以孤對電子與中心金屬Ti或V做配位鍵結。Z-V〔-NCH3(CH2)2-〕3N的三中心四電子特性比Z-Ti〔-NCH3(CH2)2-〕3N來得明顯,而在不同的Y官能基下Lp N → σ*VZ的E(2)數值大小趨勢:Y≡S>Y≡NCH3≧Y≡CH2>Y≡O。Y官能基是決定Ti…N和V…N之間的核間作用力大小的主要因素,在比較N原子與Ti-Z、V-Z之間的作用力時,發現Y≡CH2時,作用力最好,Y≡O時,作用力最差。在伸縮位能比較方面,根據F-Ti(-YCH2CH2-)3N與F-V(-YCH2CH2-)3N兩者相比結果,前者的電子總能變化反應出其分子結構不容易有大幅度的改變。在F-Ti(-YCH2CH2-)3N與F-V(-YCH2CH2-)3N的伸縮位能曲線圖裡,發現當Y≡NCH3時,會有兩種異構物出現,其中以〝axial〞結構最為穩定。

     The structures and electronic configurations of Z-Ti[-Y(CH2)2-]3N and Z-V[-Y(CH2)2-]3N are investigated by quantum calculations and NBO analysis, where Z≡F, Cl, Br, I, OH, NH2, and CH3, Y≡O, S, CH2, and NCH3. The Z…Ti…N of the Z-Ti[-Y(CH2)2-]3N and the Z…V…N of the Z-V[-Y(CH2)2-]3N are characterized by three center-four electron (3c-4e) bonding, and the bonding is mainly a dative contribution from the nitrogen lone pair for three center bonding. 3c-4e bonding is less significant in the Z-Ti[-Y(CH2)2-]3N than it is in the Z-V[-Y(CH2)2-]3N, and the energy of the orbital interaction nN → *VZ decreases in the order Y≡S>Y≡NCH3≧Y≡CH2>Y≡O when the Y group is changed. The results of calculations predict that the interaction between the nitrogen atom and the Ti-Z moiety or V-Z moiety is the strongest for the cases of Y≡CH2 and the weakest in the other cases of Y≡O. Comparison of stretching potential for Z-Ti[-Y(CH2)2-]3N and Z-V[-Y(CH2)2-]3N, we expect that the former structures are difficult to change. Besides, there are two isomers in the cases of Y≡NCH3 and the 〝axial〞isomer is more stable.

    中文摘要................................................I 英文摘要................................................II 誌 謝...................................................III 目 錄...................................................IV 表目錄..................................................VII 圖目錄..................................................XIII 第一章、前言............................................1 第二章、理論背景........................................3 裝2-1 Atrane............................................3 2-1-1理論背景...........................................3 2-1-2研究目的...........................................7 2-2計算理論.............................................8 2-2-1 HF理論方法........................................8 2-2-2 DFT理論方法.......................................9 2-2-3 基組..............................................10 2-3天然鍵性(NBO)理論....................................13 第三章、計算方法........................................15 3-1選用軟體.............................................15 3-2選用的計算理論方法和基底集合.........................15 3-3計算流程.............................................16 3-4中心金屬氧化數的選擇.................................16 第四章、結果與討論......................................19 4-1選用計算方法和基底...................................20 4-2總電子數分析.........................................26 4-2-1 V(+3)價化合物的總電子數分析......................26 4-2-2 V(+4)價化合物的總電子數分析......................27 4-2-3 V(+5)價化合物的總電子數分析......................27 4-2-4 Ti(+4)價化合物的總電子數分析.....................28 4-3 NBO鍵結結構分析....................................29 4-3-1 Ti(+4)價化合物鍵結結構分析.......................30 4-3-2 V(+5)價化合物鍵結結構分析........................31 4-3-3 V(+3)價化合物鍵結結構分析........................33 4-3-4 V(+4)價化合物鍵結結構分析........................34 4-4三中心四電子鍵......................................36 4-5 Ti…N、V…N作用力大小的比較........................41 4-5-1 Ti…N作用力大小比較..............................41 4-5-2 V(+3)價化合物V…N作用力大小比較..................46 4-5-3 V(+4)價化合物V…N作用力大小比較..................48 4-5-4 V(+5)價化合物V…N作用力大小比較..................50 4-6 Ti…N、V…N距離的易變程度..........................52 4-6-1 Ti…N距離的易變程度..............................52 4-6-2 V(+3)化合物V…N距離的易變程度....................56 4-6-3 V(+4)化合物V…N距離的易變程度....................57 4-7 N原子與Ti-Z、V-Z作用力關係.........................60 4-7-1 N原子與Ti-Z作用力關係............................60 4-7-2 V(+3)化合物:N原子與V-Z作用力關係................62 4-7-3 V(+4)化合物:N原子與V-Z作用力關係................63 4-7-4 V(+5)化合物:N原子與V-Z作用力關係................64 4-8 Ti…N、V…N的極性比較..............................65 4-8-1 Ti…N極性比較....................................65 4-8-2 V(+3)化合物V…N極性比較..........................67 4-8-3 V(+4)化合物V…N極性比較..........................68 4-8-4 V(+5)化合物V…N極性比較..........................69 4-9 E(2)值比較.........................................71 4-9-1 Ti化合物E(2)值比較...............................71 4-9-2 V(+3)化合物E(2)值比較............................75 4-9-3 V(+4)化合物E(2)值比較............................76 4-9-4 V(+5)化合物E(2)值比較............................77 4-10 Ti…N、V…N伸縮位能比較...........................79 4-10-1 Ti…N伸縮位能比較...............................79 4-10-2 V…N伸縮位能比較................................83 第五章、結論...........................................89 表.....................................................92 圖.....................................................130 參考文獻...............................................141

    (1) (a) Voronkov, M. G. Pure Appl. Chem. 1966, 13, 35. (b) Voronkov, M. G.;Baryshok, V. P. J. Organometal. Chem. 1982, 239, 199.
    (2) Pestunovich, V.;Kirpichenko, S.;Voronkov, M. G. in: Z. Rappoport, Y. Apeloig (Eds.), The Chemistry of Organic Silicon Compounds, Vol. 2, Part 1, Wiley, New York, 1998, p.1447.
    (3) Lukevics, E.;Germane, S.;Ignatovich, L. Appl. Organomet. Chem. 1992, 6, 543.
    (4) (a) Frye, C. L.;Vogel, G. E.;Hall, J. A. J. Am. Chem. Soc. 1961, 83, 996. (b) Voronkov, M. G. Pure Appl. Chem. 1966, 13, 35. (c) Voronkov, M. G. Top. Curr. Chem. 1979, 84, 77. (d) Voronkov, M. G.;Dyakov, V. M.;Kirpichenko, S. V. J. Organomet. chem. 1982, 233, 1. (e) Tandura, S. N.;Voronkov, M. G.;Lekseev, N. V. Top. Curr. Chem. 1986, 131, 99. (f) Corriu, R. J. P. J. Organomet. Chem. 1990, 400, 81. (g) Chuit, C.;Corriu, R. J. P.;Reye, C. Chem. Rev. 1993, 93, 1371.
    (5) (a) Greenberg, A.;Plant, C.;Venanzi, C. A. J. Mol. Struct. (THEOCHEM) 1991, 234, 291. (b) Korlyukov, A. A.;Lyssenko, K. A.;Antipin, M. Yu.;Kirin, V. N.;Chernyshev, E. A.;Knyazev, S. P. Inorg. Chem. 2002, 41, 5043.
    (6) (a) Peel, J. B.;Wang Dianxun J. Chem. Soc. Dalton. 1988,1963. (b) Gordon, M. S.;Carroll, M. T.;Jensen, J. H. Organometallics 1991, 10, 2657. (c) Csonka, G. I.;Hencsei, P. J. J. Comput. Chem. 1994, 15, 385.
    (7) (a) Csonka, G. I.;Hencsei, P. J. J. Organomet. Chem. 1993, 446, 99. (b) Csonka, G. I.;Hencsei, P. J. J. Mol. Stuct.(THEOCHEM) 1993, 283, 251. (c) Csonka, G. I.;Hencsei, P. J. J. Organomet. Chem. 1993, 454, 15.
    (8) Reed, A. E.;Weinstock R. B.;Weinhold, F. J. Chem. Phys. 1985, 83, 1736.
    (9) Rioux, F.;Schmidt, M. W.;Gordon, M. S. Organometallics 1997,16,158.
    (10) (a) Milov, A. A.;Minyaev, R. M.;Minkin, V. I. Zh. Or. Khim., 2003, 39, 372-379. (b) Milov, A. A.;Minyaev, R. M.;Minkin, V. I. Zh. Or. Khim., 2004, 40, 289.
    (11) Verkade, J. G. Acc. Chem. Res. 1993, 26, 483.
    (12) Verkade, J. G. Coord. Chem. Rev. 1994, 137, 233.
    (13) (a) Naiini, A. A.;Menge, W. M. P. B.;Verkade, J. G. Inorg. Chem. 1991, 30, 5009. (b) Duan, Z.;Naiini, A. A.;Lee, J.-H.;Verkade, J. G. Inorg. Chem. 1995, 34, 4311.
    (14) (a) Maitils, P. M. Chem. Rev. 1962, 622, 23. (b) Muller, E.;Burgi, H. B. Helv. Chim. Acta. 1987, 70, 499.
    (15) (a) Mehrotra, R. C.;Mehrotra, R. K. J. Indian. Chem. Soc. 1962, 39, 677. (b) Pinkas, J.;Verkade, J. G. Inorg. Chem. 1993, 32, 2711.
    (16) Chernyshev, E. A.;Knyazev, S. P.;Kirin, V. N.;Vasilev, I. M.;Alekseev, N. V. Zh. Or. Khim., 2004, 74, 65.
    (17) (a) Menge, W. M. P. B.;Verkade, J. G. Inorg. Chem. 1991, 30, 4628. (b) Naiini, A. A.;Ringrose, S. L.;Su. Y.;Jcobson, R. A.;Verkade, J. G. Inorg. Chem. 1993, 32, 1290.
    (18) Kobayashi J.;Goto K.;Kawashima T. J. Am. Chem. Soc. 2001, 123, 3387.
    (19) Kobayashi J.;Goto K.;Kawashima T.;Schmidt, M. W.;Nagase S. J. Am. Chem. Soc. 2002, 124, 3703.
    (20) (a) Cummins, C. C.;Schrock, R. R.;Davis, W. M. Organometallics 1992, 11, 1452. (b) Cummins, C. C.;Schrock, R. R.;Davis, W. M. Inorg. Chem. 1994, 33, 1448.
    (21) Starke, K. J. Inorg. Nucl. Chem. 1959, 11, 77.
    (22) Bihatsi, L.;Hencsei, P.;Kotai, L.;Ripka, G. Novenyvedelem(Budapest) 1992, 28, 180.
    (23) (a) Greenberg, A.;Wu, G. Struct. Chem. 1990, 1, 79. (b) Hencsei, P. Struct. Chem. 1991, 2, 21.
    (24) Schmidt, M. W.;Windus, T. L.;Gordon, M. S. J. Am. Chem. Soc.1995, 117, 7480.
    (25) (a) Cohen, H. J. J. Organoment. Chem. 1966, 5, 431. (b) Cohen, H. J. J. Organoment. Chem. 1967, 9, 177. (c) Naiini, A. A.;Menge, W. M. P. B.;Verkade, J. G. Inorg. Chem. 1991, 30, 5009. (d) Schubart, M.;O’Dwyer, L.;Gade, L. H. Inorg. Chem. 1994, 33, 3893. (e) Duan, Z.;Verkade, J. G. Inorg. Chem. 1995, 34, 4311.
    (26) (a) Plass, W.;Verkade, J. G. J. Am. Chem. Soc. 1992, 114, 2275. (b) Crans, D. C.;Chen, H.;Anderson, O. P.;Miller. M. M. J. Am. Chem. Soc. 1993, 115, 6769. (c) Nanda, K. K.;Sinn, E.;Addison, A. W. Inorg. Chem. 1996, 35, 1.
    (27) (a) Davies, S. C.;Hughes, D. L.;Janas, Z.;Jerzykiewicz, L.;Richards, R. L.;Sanders, J. R.;Sobota, P. Chem. Commun. 1997, 1261. (b) Davies, S. C.;Hughes, D. L.;Janas, Z.;Jerzykiewicz, L. B.;Richards, R. L.;Sanders, J. R.;Silverston, J. E.;Sobota, P. Inorg. Chem. 2000, 39, 3485. (c) Rehder, D. Inorg. Chem. Commun. 2003, 6, 604.
    (28) (a) Kim, Y.;Verkade, J. G. Organometallics 2002, 21, 2395. (b) Kim, Y.;Jnaneshwara, G. K.;Verkade, J. G. Inorg. Chem. 2003, 42, 1437.
    (29) Davies, S. C.;Hughes, D. L.;Konkol, M.;Richards, R. L.;Sanders, J. R.;Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2811.
    (30) Nugent, W. A.;Harlow, R. L. J. Am. Chem. Soc. 1994, 116, 6142.
    (31) Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69.
    (32) Weeny, R. M.;Dierksen, G. J. Chem. Phys. 1968, 49, 4852.
    (33) (a) Hohenberg, P.;Kohn, W. Physical Review 1964, 136, B864. (b) Kohn, W.;Sham, L. J. Physical Review 1965, 140, A1133. (c) Salahub, D. R.;Zerner, M. C. Eds. The Challenge of d and f Electrons (ACS, Washington, D.C., 1989). (d) Parr R. G.;Yang W. Density-functional theory of atoms and molecules (Oxford Univ. Press, Oxford, 1989).
    (34) (a)Lee, C.;Yang, W.;Parr, R. G. Physical Review 1988, B37, 785. (b) Miehlich, B.;Savin, A.;Stoll, H.;Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
    (35) Becke, A. D. Phys. Rev. 1988, A38, 3098.
    (36) Perdew, J. P. Phys. Rev. 1986, B33, 8822.
    (37) (a) Reed, A. E.;Weinhold, F. J. Chem. Phys. 1986, 84, 5687. (b) Reed, A. E.;Curtiss, L. A.;Weinhold, F. Chem. Rev. 1988, 88, 899. (c) Weinhold, F. J. Mol. Struct., (Theochem) 1997, 181, 398. (d) Mitzel, N. W.;Losehand, U. J. Am. Chem. Soc. 1998, 120, 7320. (e) Goodman, L.;Pophristic, V.;Weinhold, F. Acc. Chem. Res. 1999, 32, 983. (f) Hobza, P.;Sponer, J.;Cubero, E.;Orozco, M.;Luque, F. J. J. Phys. Chem. B. 2000, 104, 6286. (g) Reimann, B.;Buchhold, K.;Vaupel, S.;Brutschy, B.;Havlas, Z.;Spirko, V.;Hobza, P. J. Phys. Chem. A. 2001, 105, 5560.

    下載圖示
    2009-02-08公開
    QR CODE