簡易檢索 / 詳目顯示

研究生: 何仲桓
Ho, Zhong-huan
論文名稱: 具有支援內部網域直接通訊能力之時槽式長距離被動光纖網路
SPON : A Slotted Long-Reach PON Architecture for Supporting Internetworking Capability
指導教授: 林輝堂
Lin, Hui-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 82
中文關鍵詞: 時槽式接取網路長距離被動光纖網路通訊協定
外文關鍵詞: Protocol, Access Network, Slotted, Long-Reach PON
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來長距離(Long-Reach)光纖接取技術已被視為一個兼具成本考量及提升網路效能之接取網路解決方案,因為此技術能藉由結合接取網路與都會網路達到簡化網路的效果。在本篇論文中提出了一套基於陣列式波導光柵的時槽式長距離被動光纖網路系統。透過使用陣列式波導光柵,本論文所設計之系統架構具有波長重覆再利用的特性,並且提供位於各個不同本地接取網路中的光網路單元之間交互溝通的能力。除此之外,本論文也在此系統架構下,提出一套時槽式的介質控制存取通訊協定,用以仲裁各個不同光網路單元間使用分波多工頻道的存取資格,使各個光網路單元在使用上傳頻道進行傳輸時,不會發生資料碰撞導致丟失。最後,透過電腦模擬得到的結果印證本論文所提出的時槽式長距離被動光纖網路系統搭配本論文為其設計之通訊協定的整合運用,能夠有效提升整體網路中的頻寬使用率,也明顯的減少封包在光網路單元中等待傳輸的時間。

    Long-reach optical access technologies have emerged as a promising solution for combining access and metro backhaul networks in a cost-effective manner. This thesis develops a slotted PON architecture based upon an AWG for long-reach optical access networks. The AWG enables the SPON to achieve wavelength spatial-reuse and to provide an internetworking capability amongst ONUs located within different local access networks. In addition, a Slotted MAC protocol is proposed to arbitrate the access of the individual ONUs over the DWDM layer. The simulation results show that the slotted PON architecture integrated with the proposed MAC protocol enhances the bandwidth utilization within the network, and therefore achieve a significant reduction in the average packet delay.

    摘要 i Abstract ii Acknowledgement iii Contents iv List of Tables vi List of Figures vii Chapter 1 Introduction 1 1.1 An Overview of Long-Reach PONs 1 1.2 Motivation 4 1.3 Objective and Thesis Outline 6 1.3.1 Objective 6 1.3.2 Thesis Outline 8 Chapter 2 Related Work 9 2.1 Architectures of Long-Reach PON 9 2.1.1 ACTS PLANET SuperPON 10 2.1.2 10-Gb/s Long-Reach Optical-Access Network 13 2.1.3 Hybrid DWDM-TDM Long-Reach PON architecture 19 2.1.4 DWDM Reach Extension of a GPON to 135 km 29 2.1.5 Architecture to Integrate Multiple PONs with Long Reach DWDM backhaul 32 2.2 DBA Algorithm for Long Reach PON 38 2.2.1 Multi-Thread Polling: A Dynamic Bandwidth Distribution Scheme in Long-Reach PON 38 Chapter 3 Description of SPON Architecture 44 3.1 Proposed SPON System 44 3.2 Downstream and Upstream Transmission 50 Chapter 4 SPON MAC Protocol Design 55 4.1 Slotted Organization 56 4.2 SMAC Protocol 58 4.3 Proposed Inter-ONU Queue Scheduling 63 Chapter 5 Performance Evaluation 67 5.1 Model Description 68 5.2 Simulation Result 69 Chapter 6 Conclusion and Future Work 75 References 77

    [1] S.-M. Lee, S.-G. Mun, M.-H. Kim, and C.-H. Lee, “Demonstration of a Long-Reach DWDM-PON for Consolidation of Metro and Access Networks”, IEEE/OSA Journal of Lightwave Technology, Vol. 25, No. 1, pp. 271-276, Jan. 2007.
    [2] D. P. Shea, J. E. Mitchell, “A 10-Gb/s 1024-Way-Split 100-km Long-Reach Optical-Access Network”, IEEE/OSA Journal of Lightwave Technology, Vol. 25, No. 3, pp. 685-693, Mar. 2007.
    [3] G. Talli, P. D. Townsend, “Hybrid DWDM-TDM Long-Reach PON for Next-Generation Optical Access”, IEEE/OSA Journal of Lightwave Technology, Vol. 24, No. 7, pp. 74-82, Feb. 2000.
    [4] C.-J. Chae, S.-T. Lee, G.-Y. Kim, and H. Park, “A PON System Suitable for Internetworking Optical Network Units Using a Fiber Bragg Grating on the Feeder Fiber” IEEE Photonic Technology Letters, vol. 11, pp. 1686–1688, Dec. 1999.
    [5] E. Wong, C.-J. Chae, “CSMA/CD-based EPON with Optical Internetworking Capability among Users” IEEE Photonic Technology Letters, vol. 16, pp. 2195–2197, Sept. 2004.
    [6] ASM D. Hossain, R. Dorsinville and M. Ali, “Supporting Private Networking Capability in EPON” IEEE ICC, vol. 6, pp. 2655–2660, June 2006.
    [7] H.-T. Lin, W.-R. Chang, C.-L. Lai, and S.-J. Hong, “Supporting Private Networking with Wavelength Spatial-Reuse over WDM EPONs” IEEE GLOBECOM'08, pp. 1-6, Nov. 2008.
    [8] H. Takahashi, K. Oda, H. Toba, Y. Inoue, , “Transmission characteristics of arrayed waveguide NxN wavelength multiplexer” IEEE/OSA Journal of Lightwave Technology, vol. 13, no. 3, pp. 447-455, Mar 1995.
    [9] M. Maier, M. Reisslein, A. Wolisz, , “A hybrid MAC protocol for a metro WDM network using multiple free spectral ranges of an arrayed-waveguide grating” Computer Networks, Vol. 41, No. 4, pp. 407-433, 15 March 2003.
    [10] M. Maier, M. Scheutzow, M. Reisslein, , “The arrayed-waveguide grating-based single-hop WDM network: an architecture for efficient multicasting” IEEE Journal on Selected Areas in Communications, vol. 21, no. 9, pp. 1414-1432, Nov. 2003.
    [11] I. Van de Voorde, C. M. Martin, J. Vandewege and X. Z. Qiu., “The SuperPON Demonstrator: An Exploration of Possible Evolution Paths for Optical Access Networks”, IEEE Communications Magazine Feb. 2000.
    [12] C. Coene, B. Stubbe, J. Codenie, R. Vlaminck, P. Vaes, X.-Z. Qiu, J. Vandewege, C. M. Martin, “Uplink Performance Evaluation of Super Optical Access Networks” ECOC ’99, Nice, Sept. 1999, pp. 138-39.
    [13] J. Codenie , B. Stubbe , C. Coene , R. Vlaminck , P. Vaes , X. Z. Qui , J. Vandewege , P. Solina , B. H. Slabbinck , “Performance of Burst Mode Receiver and Optical Repeater Units in SuperPON” SPIE ’99, All Optical Networking 1999, Architecture, Control, and Management Issue, Sept. 1999, Boston.
    [14] J. Vandenbroeck, FIST-SASA2 Ordering Guide. Harrisburg, PA: Tyco/Electronics/Raychem, Jan. 2000.
    [15] D. P. Shea, R. P. Davey, A. Lord, and J. E. Mitchell, “Design aspects of long reach optical access networks” presented at the Int. Symp. Services and Local Access, Edinburgh, U.K., 2004.
    [16] ITU-T Recommendation G.975: ‘Forward Error Correction for Submarine Systems’, 2000, Geneva, Switzerland: Int. Telecommunication Union.
    [17] S. Hornung, D. Payne, and R. Davey, “New architecture for an all optical network” IEEE OFC Conference, Anaheim, CA, 2005, Paper OTuH7.
    [18] P. Gysel and R. K. Staubli, “Spectral properties of Rayleigh backscattered light from single-mode fibers caused by a modulated probe signal” IEEE/OSA Journal of Lightwave Technology, vol. 8, no. 12, pp. 1792–1798, Dec. 1990.
    [19] E. K. MacHale, G. Talli, and P. D. Townsend, “10 Gb/s bidirectional transmission in a 116 km reach hybrid DWDM–TDM PON” IEEE OFC Conference, Anaheim, CA, 2006, Paper OFE1.
    [20] T. Yoshida, S. Kimura, and K. Kumozaki, “A novel backreflection suppression method using phase modulation for 10 Gb/s single-fiber WDM loopback networks” ECOC 2004, Paper Tu3.6.6.
    [21] Z. Li, Y. Dong, Y.Wang, and C. Lu, “A novel PSK—Manchester modulation format in 10-Gb/s passive optical network system with high tolerance to beat interference noise” IEEE Photonic Technology Letters, vol. 17, no. 5, pp. 1118–1120, May 2005.
    [22] D. G. Moodie, P. J. Cannard, A. J. Dann, D. D. Marcenac, C. W. Ford, J. Reed, R. T. Moore, J. K. Lucek, and A. D. Ellis, “Low polarisation sensitivity electroabsorption modulators for 160 Gbit/s networks” IET Electronics Letters, vol. 33, no. 24, pp. 2068–2070, Nov. 1997.
    [23] A. Borghesani, N. Fensom, A. Scott, G. Crow, L. M. Johnston, J. A. King, L. J. Rivers, S. Cole, S. D. Perrin, D. Scrase, G. Bonfrate, A. D. Ellis, G. Crouzel, L. S. How Kee Chun, A. Lupu, E. Mahe, P. Maigne, and I. F. Lealman, “High saturation power (> 16.5 dBm) and low noise figure (< 6 dB) semiconductor optical amplifier for C-band operation” IEEE OFC Conference, 2003, pp. 534–536.
    [24] W. Mao, P. A. Andrekson, and J. Toulouse, “Investigation of a spectrally flat multi-wavelength DWDM source based on optical phase and intensity modulation” IEEE OFC Conference, Los Angeles, CA, 2004, Paper MF78.
    [25] G. Talli and P. D. Townsend, “Feasibility demonstration of 100 km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and 10 Gb/s” IEEE OFC Conference, Glasgow, U.K., 2005, Paper OFI1.
    [26] R. P. Davey, P. Healey, I. Hope, P. Watkinson, D. B. Payne, “DWDM Reach Extension of a GPON to 135 km” IEEE/OSA Journal of Lightwave Technology, Vol. 24, No. 1, January 2006.
    [27] R. Nagarajan, C.H. Joyner, R.P Schneider. Jr., J.S. Bostak, T. Butrie, A.G. Dentai, V.G. Dominic, P.W. Evans, M. Kato, M. Kauffman, D.J.H. Lambert, S.K. Mathis, A. Mathur, R.H. Miles, M.L. Mitchell, M.J. Missey, S. Murthy, A.C. Nilsson, F.H. Peters, S.C. Pennypacker, J.L. Pleumeekers, R.A. Salvatore, R.K. Schlenker, R.B. Taylor, H.-S. Tsai, M.F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S.G. Grubb, M.S. Reffle, D.G. Mehuys, F.A. Kish, D.F. Welch, “Large-scale photonic integrated circuits” IEEE Journal of Selected Topics Quantum Electronics, vol. 11, no. 1, pp. 50–65, Jan./Feb. 2005.
    [28] S. R. Melle, C. Dodd, C. Liou, M. Sosa, and M. Yin, “Network planning and economic analysis of an innovative new optical transport architecture” IEEE OFC Conference/National Fiber Optic Engineer’s Conference, Anaheim, CA, Mar. 6–11, 2005, Paper NTuA1.
    [29] D. P. Shea and J. E. Mitchell, “Architecture to Integrate Multiple PONs with Long Reach DWDM Backhaul” IEEE Journal on Selected Areas in Communications, Vol. 27, No. 2, Feb 2009.
    [30] K. Grobe, J.-P Elbers, ”PON in adolescence: from TDMA to WDMPON” IEEE Communication Magazine, vol. 46 (1), pp. 26-34, 2008. 1.
    [31] K. Inoue, ”Polarization-insensitive wavelength conversion using fibre fourwave mixing with two orthogonal pumps lights of different frequencies” in OFC ’94. San Jose, CA: ThQ5, 1994.
    [32] M. C. Tatham, G. Sherlock, and L. D. Westbrook, ”20-nm optical wavelength conversion using non-degenerate four-wave mixing” IEEE Photonics Technology Letters, vol. 5, pp. 1303, 1993.
    [33] T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, ”All-optical wavelength conversion by semiconductor optical amplifiers” IEEE/OSA Journal of Lightwave Technology, vol. 14, pp. 942, 1996.
    [34] K. Inoue, T. Mukai, and T. Saitoh, ”Gain Saturation Dependence on Signal Wavelength in a Travelling-Wave Semiconductor Laser Amplifier” IET Electronics Letters, vol. 23, pp. 328 - 329, 1987.
    [35] F. Koyama and K. Iga, ”Frequency Chirping in External Modulators” IEEE Journal of Lightwave Technology, vol. 6, pp. 87 - 93, 1988.
    [36] I. P. Kaminow and T. L. Koch, Optical Fiber Telecommunications IIIA, . Academic Press, 1997, pp. 122 -123
    [37] D. Nesset, R. P. Davey, D. P. Shea, P. Kirkpatrick, S. Q. Shang, M. Lobel, and B. Christensen, ”10 Gbit/s Bidirectional Transmission in 1024- way Split, 110 km Reach PON Systems using Commercial Transceiver Modules, SuperFEC and EDC” ECOC 2005, Glasgow, Scotland, 2005.
    [38] H. Song, B.-W. Kim, B. Mukherjee, “Multi-Thread Polling: A Dynamic Bandwidth Distribution Scheme in Long-Reach PON” IEEE Journal on Selected Areas in Communication, Vol. 27, No. 2, Feb, 2009.
    [39] G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT: A dynamic protocol for an ethernet PON (EPON)” IEEE Communication Magazine, vol. 40, no. 2, pp. 74-80, Feb. 2002.
    [40] G. Kramer, B. Mukherjee, G. Pesavento, “Ethernet PON (ePON): Design and Analysis of an Optical Access Network” Photonic Network Communications, vol. 3, no. 3, pp. 307-319, July. 2001.
    [41] E. Modiano et al., “Design and Analysis of an Asynchronous WDM Local Area Network Using a Master/Slave Scheduler” IEEE INFOCOM, vol.2, pp. 900-907, Mar. 1999.
    [42] W. Willinger, M. S. Taqqu, and A. Erramilli, “A bibliographical guide to self-similar traffic and performance modeling for modern high-speed networks” in Stochastic Networks. Oxford, U.K.: Oxford Univ. Press, pp. 339-366, 1996.
    [43] OptSim Network Simulator, http://www.rsoftdesign.com/

    下載圖示 校內:2013-07-21公開
    校外:2015-07-21公開
    QR CODE