簡易檢索 / 詳目顯示

研究生: 陳元昊
Chen, Yuan-Hao
論文名稱: 萃取前處理焚化飛灰作為卜作嵐攙和料之研究
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 87
中文關鍵詞: 萃取前處理焚化飛灰重金屬三相圖主要成分
外文關鍵詞: MSWI fly ash, extraction, heavy metal, ternary plot
相關次數: 點閱:104下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 焚化係台灣地區垃圾處理之主要方式,其產生的焚化灰渣之管理,應為今後之重要環保課題。本研究分別以水洗、酸洗及鹼洗等方式,探討前處理萃取對飛灰主要成分鈣、鋁、矽組成之影響,並檢討其對重金屬及氯鹽、硫酸鹽等混凝土性質干擾物之去除效率。此外,再將前處理後殘餘物替代混凝土細骨材,探討攙和量對混凝土抗壓強度之影響,以評估飛灰作為混凝土攙和料之可行性。
    研究結果顯示,水洗及氨洗萃取方式對飛灰鹼度影響較小,萃取後殘留飛灰重金屬溶出不易超過TCLP溶出標準。酸萃取方式則隨酸劑量之增加而中和掉飛灰中鹼度,萃取後殘餘飛灰重金屬溶出易超出TCLP溶出標準。如醋酸在2 mmol/g FA劑量下,鉛溶出達4.57 mg/L;硝酸在1 mmol/g FA劑量下,鉛溶出濃度達18.9 mg/L,高於TCLP溶出標準,但隨萃取酸劑量增加而濃度降低。然而,萃取液中重金屬濃度隨萃取酸量增加而增加,在醋酸10 mmol/g FA劑量下,萃取液中鋅濃度為249.7 mg/L,硝酸在4.4 mmol/g FA劑量下,萃取液中鋅濃度可達193.5 mg/L,若透過適當處理程序,極具回收價值。此外,酸萃取劑量愈多,亦可去除飛灰中較多量之氯鹽、硫酸鹽,有利於飛灰後續資源化再利用。至於各前處理方式對飛灰主成分影響,一般而言,水洗及氨洗過程對飛灰主成分影響不大,酸洗程序之鈣溶出量較高,主成分在三相圖中有朝矽量高區域移動趨勢,當硝酸劑量達4.4 mmol/g FA,飛灰主成分已極近似於卜作嵐攙料。
    本研究結果可知,經硝酸前處理過之飛灰,其重金屬及氯鹽、硫酸鹽等干擾物質可被有效去除,有助於進行飛灰無害化、重金屬萃取、主成分調質等前處理程序之選擇。然而以經硝酸前處理飛灰替代混凝土細骨材實驗結果顯示,添加經前處理飛灰的試體其抗壓強度為添加未經處理飛灰試體之兩倍,顯示前處理雖有助於飛灰攙和於混凝土。然而其28天抗壓強度僅達150 kg/cm2左右,顯示尚有干擾因子待進一步釐清。

    In Taiwan, municipal solid waste is mostly incinerated. Though 15% of volume reduction could be attained, the management of remained MSWI ash is still one of the important topics in integrated solid waste management. In this study, MSWI fly ash was pretreated by acid, water and ammonia extraction. And the effects of extraction on chemical compositions of fly ash were investigated. For further concrete application of pretreated fly ash, the removal efficiencies of heavy metals, chloride and sulfide were also surveyed. Finally, the pretreated fly ash substituted as fine aggregate into concrete, and the feasibility of pretreated fly in concrete application was evaluated by analysis of the compressive strength of developed concrete.
    The results from extractions showed that ammonia and water extraction have little influence on the alkalinity of fly ash, and hence the heavy metal concentrations in TCLP leachates are below the regulatory standard. Nevertheless, the alkalinity existed in fly ash was neutralized by acid extraction, and the heavy metal concentrations in TCLP leachate might exceed the regulatory standard. On the other hand, the heavy metal concentrations in acid extraction leachates, such as Zn and Pb, are high enough for further recovery. Furthermore, the more acid dose is added, the more calcium was removed from fly ash. The chemical composition of fly ash moved toward the region of pozzolanic admixture in SiO2-Al2O3-CaO ternary plot after the acid extraction pretreatment. In summary, acid extraction helps the removal of leaching hazard, recovery of heavy metal and adjustment of chemical composition of fly ash.
    With adding pretreated fly ash, the compressive strength of the concrete is two times larger to that of concretes with untreated fly ash addition. The extraction pretreatment should be applicable in removing interference for concrete application. However, the compressive strength of the concretes with pretreated fly ash addition just reached 150 kg/cm2 at 28-day of curing age, the undiscovered influence should be further clarified for engineering application.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VII 圖目錄 X 表目錄 XI 第一章 前言 1 1-1 研究動機及目的 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1 都市垃圾焚化飛灰之特性及處置 3 2-1-1 飛灰之種類及近似組成 3 2-1-2 重金屬富集與溶出特性 8 2-1-3 飛灰處理及處置技術之現況 10 2-2 飛灰之再利用方案 13 2-2-1 飛灰之再利用可行性 14 2-2-2 焚化飛灰再利用方案之比較 19 2-3 飛灰於混凝土再利用 21 2-3-1 混凝土特性 21 2-3-2 混凝土干擾因子 22 2-3-3 焚化飛灰再利用於混凝土潛在問題點 23 2-4 焚化飛灰前處理方案 24 2-4-1 熔融熱處理法 24 2-4-2 化學穩定法 24 2-4-3 加酸萃取法 25 2-5 小結 25 第三章 實驗設備、方法、步驟 27 3-1 研究架構及實驗流程 27 3-2 實驗材料之準備 30 3-3 實驗設備與方法 31 3-3-1 基本特性分析 31 3-3-2 醋酸萃取前處理 34 3-3-3 硝酸萃取前處理 35 3-3-4 氨萃取前處理 35 3-3-5 水萃取前處理 35 3-4 飛灰添加混凝土配比設計 36 3-4-1 未處理飛灰攙和混凝土 36 3-4-2 經不同劑量萃取液萃取後飛灰添加於抗壓試體 36 3-4-3 抗壓試體強度測試 36 第四章 結果與討論 37 4-1 焚化飛灰基本特性與溶出毒性 37 4-1-1 焚化飛灰、反應灰基本特性 37 4-1-2 焚化飛灰、反應灰溶出毒性 40 4-1-3 小結 41 4-2 焚化飛灰之前處理 42 4-2-1 醋酸前處理 43 4-2-2 水前處理 50 4-2-3 硝酸前處理 55 4-2-4 氨前處理 62 4-2-5 小結 67 4-3 飛灰替代細骨材摻和混凝土之影響 70 4-3-1 未處理飛灰摻和混凝土 70 4-3-2 酸洗強度對飛灰摻和混凝土影響 73 4-4 結論 75 第五章 結論與建議 77 5-1 結論 77 5-2 建議 78 參考文獻 80

    Ajiwe, V.I.E., Okeke, C.A. and Akigwe, F.C.. A preliminary study of manufacture of cement from rice husk ash. Bioresource Technology 73, 37-39, (2000).
    Alba, N., Vazquez, E., Gasso, S. and Baldasano, J.M.. Stabilization/ solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Management 21, 313-323, (2001).
    Asavapisit, S., Fowler, G. and Cheeseman, C.R.. Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cement and Concrete Research 27(8), 1249-1260, (1997).
    Beretka, J., Devito, B., Santoro, L., Sherman, N. and Valenti, G.L.. Resour. Conserv. Recycling 9, 179, (1993).
    Bruggen, B.V., Vogel, G., Van P.H. and Vandecasteele, C.. Simulation of acid washing of municipal solidwaste incineration fly ashes in order to remove heavy metals. Journal of Hazardous Materials 57, 127-144, (1998).
    Chan, C.Y. and Kirk, D.W.. Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents. Journal of Hazardous Materials B64, 75-89, (1999).
    Collivignarelli, C and Sorlini, S.. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Management, (2002).
    Derie, R.. A new way to stabilize fly ash from municipal incinerators. Waste Management 16(8), 711, (1996).
    Ferreira, C., Ribeiro, A. and Ottosen, L.. Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials B96, (2003).
    Forestier, L., and Le, L.G.. Characterization of flue gas residues from municipal solid waste combustors. Environmental Science and Technology 32(15), 2250, (1998).
    Giordano, P.M., Behel, A.D. Jr., Lawrence, J.E. Jr., Solleau, J.M. and Bradford, B.N.. Mobility in soil and plant availability of metals derived from incinerated municipal refuse. Environmental Science and Technology 17(4), 193-198, (1983).
    Greenberg, R.R., William H.Z. and Glen E.G.. Composition and size distributions of particles released in refuse incineration. Environmental Science and Technology 12(5), 566-573, (1978).
    He, C., Makovicky, E. and Osbæck, B.. Thermal Stability and Pozzolanic Activity of Raw and Calcuned Mixed-Layer Mica / Smectite. Applied Clay Science 17, 141-161, (2000).
    Hsiao, M.C., Wang H.P., Wei, Y.L., Chang, J.E. and Jou, C.J.. Speciation of copper in the incineration fly ash of municipal solid waste. Journal of Hazardous Materials 95, 301-307, (2002).
    Hsiau, P.C., Lo, S.L.. Extractabilities of heavy metals in chemically-fixed sewage sludges. Journal of Hazardous Materials 58, 73-92, (1998)
    Kida, A., Noma, Y. and Imada, T.. Chemical speciation and leaching properties of elements in municipal incinerator ashes. Waste Management 16(5/6), 527-536, (1996).
    Mangialardi, T., Piga, L., Schena, G. and Sirini, P.. Characteristics of msw incinerator ash for use in concrete. Environmental Engineering Science 15(4) , (1998).
    Marvin, D.M., Garry, W.W. and Sanjeev, M.L.. Stabilization and hydrometallurgical treatment of flyash form a municipal incinerator. Journal of Hazardous Materials 29(2), 255-273, (1992).
    Monshi, A. and Asgarani, M.K.. Producing Portland Cement from Iron and Steel Slaga and Limestone. Cement and Concrete Research 29, 1373-1377, (1999).
    Ole, H.. Disposal strategies for municipal solid waste incineration residues. Journal of Hazardous Materials 47, 347-350, (1996).
    Omotos, O.E., Ivey, D.G. and Mikula, R.. Containment mechanism of trivalent chromium in tricalcium silicate. Journal of Hazardous Materials 60, 1-28, (1998).
    Ontiveros, J.T., Clapp, T.L. and Kosson, D.S.. Physical properties and chemical species distributions within municipal waste combuster ashes. Environment Progess 8(3), 200, (1989).
    Park,C.K..Hydoation and solidification of hazardous wastes containing heavy metals using modified cementitious materials.Cement and Concrete Research 30, 429-435 (2000).
    Poon, C.S., Lam, L. and Wong, Y.L.. A Study on High Strength Concrete Prepared with Large Volumes Calcium Fly Ash. Cement and Concrete Research 30, 447-455, (2000).
    Rashid, R.A. and Frantz, G.C.. MSW incinerator ash aggregate in concrete and masonry. Journal of Materials in Civil Engineering 4(4) , (1992).
    Richers, U. and Birnbaum, L.. Detailed investigations of filter asher from c municipal solid waste incineration. Waste Management & Research 6, 227, (1998).
    Romero, M., Rawlings, R.D. and Rincon, J.M.. Development of a new glass-ceramic by means of controlled vitrification and crystallization of inorganic wastes from urban incineration. Journal of the European Ceramic Society 19(12), 2049-2058, (1999).
    Rosen, C.J., Bierman, P.M. and Olson D.. Swiss Chared and Alfalfa responses to soil amended with Municipal soild waste incinerator ash:growth and elemental composition. Journal of Agricultural Food Chemistry 42, 1361, (1994).
    Shoaib, M.M., Balaha, M.M. and Abdel-Rahman, A.G.. Influence of cement kiln dust substitution on the mechanical properties of concrete. Cement and Concrete Research 30, 371-377, (2000).
    Tay, J.H. and Show, K.Y.. Utilization of ashes from oil-palm wastes as a cement replacement material. Water Science and Technology 34(11), 185-192, (1996).
    Wang, K.S., Lin, K.L. and Huang, Z.Q.. Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research 31, 97-103, (2001).
    Wiles, C.C.. Municipal solid waste combustion ash: State-of-the- knowledge. Journal of Hazardous Materials. 47, 325-344, (1996).
    Yang, G. C.C., Chou, S.W. and Hsu, T.F.. Effects of chelant (EDTA) addition on properties of cement-solidified municipal incinerator fly ash. Journal of Hazardous Materials 58, 153-146, (1998).
    91年環境保護統計年報
    中國國家標準CNS 61【卜特蘭水泥】
    中國國家標準CNS 486【粗細粒料篩析法】
    中國國家標準CNS 1010【水硬性水泥墁料抗壓強度檢驗法】
    中國國家標準CNS 1012【流動性台及流動性模】
    中國國家標準CNS 1078【卜特蘭水泥化學分析法】
    中國國家標準CNS 3036【卜作嵐水泥混凝土用飛灰及天然物或蝦燒卜作攙和物】
    中國國家標準CNS 3655【水硬性水泥可塑稠性水泥漿及墁料之機械拌合法】
    方鴻源、蘇南、蘇傳凱,「以混凝土固化含重金屬之飛灰與污泥的物化成效之研究」,第十二屆廢棄物處理技術研討會,第161~167頁,1997。
    王鯤生、余岳峰、蔡振球、楊志政,董旻叡,「下水污泥灰主要成分調質對燒成輕質骨材之影響探討」,第十五屆廢棄物處理技術研討會,pp.5-7~5-13,2000。
    王鯤生、孫常榮、林凱隆、張景雲、張毓舜,「都市廢棄物焚化對灰渣粒徑與重金屬分佈及溶出特性之探討」,第十五屆廢棄物處理技術研討會,第463-469頁,1998。
    王鯤生、葉宗智、孫常榮、劉宗諭、劉建良,「粒徑大小對焚化飛灰燒結應用之研究」,第十二屆廢棄物處理技術研討會,pp.561~568,1997。
    李俊德、黃奕叡、黃國林、李文智,「都市垃圾焚化灰渣熱熔特性之研究」第十七屆廢棄物處理技術研討會,2002。
    林宗曾,「重金屬污泥之飛灰固化法研究」,國立台灣大學環境工程學研究所,碩士論文,1985。
    林信一、陳其南、楊萬發,「垃圾焚化灰渣之特性、管理現況與未來展望」,一般廢棄物焚化灰渣資源化技術研討會專輯,第1~12頁,1996。
    高思懷、林家禾,「垃圾焚化飛灰中無機鹽對重金屬溶出之影響」,第十屆廢棄物處理技術研討會論文集 pp247~pp254,1995。
    柴浣蘭、莊富盛、周錦東,「都市垃圾焚化飛灰在PU發泡體之應用」,第十七屆廢棄物處理技術研討會,2002。
    張乃斌,「垃圾焚化廠系統工程規劃與設計」,茂昌圖書有限公司,1998。
    張坤森、羅賢詩、林廷華、葉蕙萍、劉思沁,「以淋洗、超音波及電動力法去除都市垃圾焚化飛灰重金屬之研究」,第十五屆廢棄物處理技術研討會,第1-164-169頁,2000。
    張祖恩、林宗曾、許琦、賴進興、柯明賢、施百鴻,「中鋼公司轉爐及熱軋礦泥作為水泥副原料資源化再利用之研究」,中國鋼鐵股份有限公司研究報告,1998。
    張祖恩、林宗曾、許琦、賴進興、柯明賢、施百鴻,「中鋼公司高爐礦泥(二)資源化再利用之研究」,中國鋼鐵股份有限公司研究報告,1999。
    郭子豪,「經前處理垃圾焚化底灰做為水泥原料之研究」,國立成功大學環境工程研究所,碩士論文,台南,2001。
    郭淑德,「飛灰資源化,礦業技術」,29卷4期,299-315,1991。
    楊金鐘、吳裕民,「垃圾焚化灰渣穩定化產物再利用之可行性探討」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,p.29,1996。
    楊金鐘、周順裕,「利用磷酸鹽穩定化處理都市垃圾焚化飛灰之效果評估」,第十二屆廢棄物處理技術研討會,第577~584頁,1997。
    黃錦明、楊萬發,「論垃圾焚化灰渣在利用之適法性」,第十七屆廢棄物研討會,2002。
    廖錦聰,「從日本的經驗談台灣焚化灰渣資源化之方向」,一般廢棄物焚化灰渣資源化技術研討會專輯,第13~28頁,1996。
    蔣立中、張朝森、蘇義斐、劉春香,「不同萃取劑對焚化飛灰重金屬萃取效果之探討」第十五屆廢棄物處理技術研討會論文集,pp7-24~pp7-28
    ,2000。
    蘇俊賓,「焚化底灰作為水泥替代原料可行性之研究」,國立成功大學環境工程研究所,碩士論文,台南,2000。
    顧順榮、鍾昀泰、張木彬,「台灣地區都市垃圾焚化灰分中重金屬濃度及TCLP溶出之評估」,第十屆廢棄物處理技術研討會,第271~279頁,1995。

    下載圖示 校內:立即公開
    校外:2003-08-11公開
    QR CODE