簡易檢索 / 詳目顯示

研究生: 鄭家倫
Cheng, Chia-Lun
論文名稱: 次波長金屬狹縫的電漿子效應對光漏斗效應之影響
The plasmonic effect on funneling effect through a subwavelength metallic slit
指導教授: 陳寬任
Chen, Kuan-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 52
中文關鍵詞: 漏斗效應金屬狹縫表面電漿模態有限時域差分法
外文關鍵詞: Funneling effect, Metallic slit, Surface plasmon polariton, FDTD
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前之研究中,對於完美導體情況下的狹縫漏斗效應已有較為完整的了解,然而對於真實金屬情況下的狹縫漏斗效應仍待研究。本研究主要探討在不同ω_p(plasma frequency)的情況下,其金屬狹縫下的漏斗效應,並以我們所定義之漏斗形狀,進一步分析此情況下之漏斗效應。此研究所設定之ω_p較接近於入射光之ω,不似完美導體差至15個數量級以上。於此情況下,我們發現其Ey場之相位轉變時間相較於Hz有所延遲,之後也如完美導體隨著週期震盪,進而發現漏斗在一個週期內存在的時間會明顯地減少,且涵蓋之範圍減少,同時也可以看到狹縫內時間平均的能量流有明顯的減少。

    From previous studies, we have a more complete understanding about the funneling effect of slit in the case of perfect electric conductor (PEC). However, the real metal’s funneling effect still needs to be studied. In this thesis, we focus on the funneling effect under the metal slit with different plasma frequencies. Then, we use the definition of funnel shape from previous work to study funneling effect’s characteristic further. In this thesis, we let the material’s plasma frequency near our light source’s angular frequency. It does not resemble the perfect conductor difference to more than 15 orders of magnitude. In this case, the diffraction wave’s phase changing will be a delay compared to the PEC case. In the case of ω_p⁄ω_0 =3, its diffracted wave will also oscillate with the cycle. Then, the time that the funnel presented in one cycle is significantly reduced, and its covering area is also reduced. The time average energy flow is also reduced at the same time.

    口試合格證明 I 中文摘要 II 英文延伸摘要 III 誌謝 IX 目錄 X 圖目錄 XII 第一章 序論 1 第二章 光進入金屬狹縫的初期狀態 3 2.1 模擬環境與座標系統 3 2.2 完美金屬導體狹縫情況下之漏斗效應機制與形狀定義 7 2.3 金屬狹縫與完美導體狹縫初期電磁場比較 10 2.4 金屬狹縫與完美導體狹縫初期之漏斗效應比較 16 第三章 光進入金屬狹縫達穩定狀態(無FABRY-PEROT-LIKE RESONANCE) 19 3.1 金屬狹縫與完美導體狹縫穩定狀況下電磁場比較 20 3.1.1 不同空間解析度下模擬狹縫入口處之狀況 20 3.1.2 金屬之穿透膚深 24 3.1.3 金屬介面之表面電漿模態 26 3.1.4 狹縫內部之傳播波長 30 3.2 電磁場於穩定狀態下一週期內之變化 32 3.3 金屬狹縫達穩定狀態下之漏斗效應 37 3.4 不同電漿頻率情況下之漏斗效應 41 3.5 不同縫寬之漏斗效應比較 43 第四章 結論 47 參考文獻 49

    1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming Light from a Subwavelength Aperture," Science 297, 820-822 (2002).
    3. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, "Focusing light with a single subwavelength aperture flanked by surface corrugations," Appl. Phys. Lett. 83, 4500 (2003).
    4. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of Highly Directional Emission from a Single Subwavelength Aperture Surrounded by Surface Corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    5. K. R. Chen, "Focusing of light beyond the diffraction limit of half the wavelength," Opt. Lett. 35, 3763-3765 (2010).
    6. K. R. Chen, W. H. Chu, H. C. Fang, C. P. Liu, C. H. Huang, H. C. Chui, C. H. Chuang, Y. L. Lo, C. Y. Lin, H. H. Hwung, and A. Y. G. Fuh, "Beyond-limit light focusing in the intermediate zone," Opt. Lett. 36, 4497-4499 (2011).
    7. G. Yuan, E. T. F. Rogers, T. Roy, G. Adamo, Z. Shen, and N. I. Zheludev, "Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths," Scientific reports 4, 6333 (2014).
    8. X. Zhang, L. Yan, Y. Guo, W. Pan, B. Luo, and X. Luo, "Enhanced Far-Field Focusing by Plasmonic Lens Under Radially Polarized Beam Illumination," Plasmonics 11, 109-115 (2016).
    9. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, "Enhanced light transmission through a single subwavelength aperture," Opt. Lett. 26, 1972-1974 (2001).
    10. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater. 7, 442-453 (2008).
    11. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub–Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534 (2005).
    12. P. B. Catrysse, and B. A. Wandell, "Integrated color pixels in 0.18-µm complementary metal oxide semiconductor technology," Journal of the Optical Society of America A 20, 2293-2306 (2003).
    13. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, "Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging," Nat. Commun. 1, 59 (2010).
    14. Y. Takakura, "Optical Resonance in a Narrow Slit in a Thick Metallic Screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
    15. B. Sturman, E. Podivilov, and M. Gorkunov, "Transmission and diffraction properties of a narrow slit in a perfect metal," Physical Review B 82, 115419 (2010).
    16. S.-H. Chang, and Y.-L. Su, "Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission," J. Opt. Soc. Am. B 32, 38-44 (2015).
    17. S.-H. Chang, and Y.-L. Su, "Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonant transmission," J. Opt. Soc. Am. B 32, 45-51 (2015).
    18. S. Astilean, P. Lalanne, and M. Palamaru, "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
    19. J.-S. Hong, A. E. Chen, and K.-R. Chen, "Modulated light transmission through a subwavelength slit at early stage," Opt. Express 23, 9901-9910 (2015).
    20. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission Resonances on Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 83, 2845-2848 (1999).
    21. F. J. García-Vidal, and L. Martín-Moreno, "Transmission and focusing of light in one-dimensional periodically nanostructured metals," Physical Review B 66, 155412 (2002).
    22. F. Pardo, P. Bouchon, R. Haïdar, and J.-L. Pelouard, "Light Funneling Mechanism Explained by Magnetoelectric Interference," Phys. Rev. Lett. 107, 093902 (2011).
    23. R. Gordon, "Light in a subwavelength slit in a metal: Propagation and reflection," Physical Review B 73, 153405 (2006).
    24. J. Wuenschell, and H. K. Kim, "Excitation and Propagation of Surface Plasmons in a Metallic Nanoslit Structure," IEEE Trans. Nanotechnol. 7, 229-236 (2008).
    25. Y. Xi, Y. S. Jung, and H. K. Kim, "Interaction of light with a metal wedge: the role of diffraction in shaping energy flow," Opt. Express 18, 2588-2600 (2010).
    26. Q. Cao, and P. Lalanne, "Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits," Phys. Rev. Lett. 88, 057403 (2002).
    27. J.-W. Li, J.-S. Hong, W.-T. Chou, D.-J. Huang, and K.-R. Chen, "Light Funneling Profile During Enhanced Transmission Through a Subwavelength Metallic Slit," Plasmonics (2018).
    28. Y. Kane, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
    29. G. Webb-Wood, and P. G. Kik, "Simultaneous excitation of fast and slow surface plasmon polaritons in a high dielectric contrast system," Appl. Phys. Lett. 92 (2008).
    30. H. Raether, "Surface Plasmons on Smooth and Rough Surfaces and on Gratings," (1998).
    31. C. Li, Y.-S. Zhou, H.-Y. Wang, and F.-H. Wang, "Wavelength squeeze of surface plasmon polariton in a subwavelength metal slit," J. Opt. Soc. Am. B 27, 59-64 (2010).
    32. E. F. G. Rosenblatt, and M. Orenstein, "Circular motion of electromagnetic power shaping the dispersion of Surface Plasmon Polaritons," Opt. Express 18, 25861-25872 (2010).

    下載圖示 校內:2023-08-28公開
    校外:2023-08-28公開
    QR CODE