簡易檢索 / 詳目顯示

研究生: 王偉仲
Wang, Wei-Chung
論文名稱: 含壓電樑聲子晶體共振腔之聲能能量擷取
Acoustic Energy Harvesting by Using Phononic Crystals with a Piezoelectric Beam in the Resonant Cavity
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 63
中文關鍵詞: 壓電複合層型曲樑聲子晶體能量擷取
外文關鍵詞: phononic crystal, energy harvesting
相關次數: 點閱:142下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用聲子晶體共振腔與壓電材料來當作能量擷取裝置來轉換電能,並利用實驗應證。首先,以平面波展開法配合超晶胞法求得聲子晶體共振腔的共振頻率,得到共振腔內局部化聲波的頻率,再放置壓電複合層型曲樑於共振腔內,藉由聲壓產生外力,推動壓電複合層型曲樑而得到電壓。在預測所產生的電壓方面,使用漢米爾頓原理來推導壓電複合層型曲樑的動態運動方程式,並利用壓電理論,進而推導出產生的電壓,當不同的外加電阻作用下,找出產生最大功率的電阻值。
    最後,以實驗來應證能量擷取所產生的電壓與功率,並加以比對,證明含壓電樑聲子晶體共振腔之聲能能量擷取是可以分析與應用。

    In this study, the resonant cavity of phononic crystals and the piezoelectric material are combined to act as an energy harvesting device. The acoustic energy can be converted to electrical energy. The plane wave expansion method and supercell method are used to obtain the resonant frequency of the cavity in two-dimension phononic crystals. The acoustic waves at resonant frequency can be localized in the cavity of the sonic crystal. The piezoelectric laminated curved beam is placed in the resonant cavity, and vibrated by the sound pressure in the cavity. The acoustic energy harvesting can be achive to electrical energy. In order to predict the output voltage and power, the dynamic governing equation of the piezoelectric laminated curved beam is derived by using the Hamilton’s principle. The piezoelectric theory is also employed to calculate the output voltage and power. With the suitable external resistance, the maximum output power can be obtained.
    Finally, the results of calculation for the output voltage and power are confirmed by the experiment. And, we compare the results of experiment with calculation and simulation. The acoustic energy harvesting by using phononic crystals with a piezoelectric beam in the resonant cavity are analyzable and applicable.

    摘 要.................................I Abstract .............................II 誌 謝.................................III 目 錄.................................IV 表 目 錄..............................VI 符 號.................................X 第一章 緒論...........................1 1-1前言...............................1 1-2 文獻回顧..........................2 1-2-1聲子晶體共振腔...................2 1-2-2能量擷取.........................3 1-2-3 壓電複合層型曲樑................4 1-3 本文結構..........................5 第二章 數值方法.......................8 2-1 前言..............................8 2-2 平面波展開法......................8 2-3 超晶胞法..........................12 2-4 有限元素法........................13 第三章 聲子晶體共振...................21 3-1 前言..............................21 3-2 能帶結構與共振腔之共振頻率之判斷..21 3-3 共振腔之現象與模擬................22 3-4 實驗與模擬比對....................23 第四章 聲能能量擷取...................32 4-1前言...............................32 4-2曲樑模型與動態運動方程式...........32 4-3外加電阻下的電壓與功率.............37 4-4數值分析...........................39 第五章 聲能能量擷取實驗...............49 5-1前言...............................49 5-2實驗裝置...........................49 5-3實驗結果...........................50 第六章 综合結論與未來展望.............57 6-1综合結論...........................57 6-2未來展望...........................57 參 考 文 獻...........................59 自 述.................................63

    參 考 文 獻
    [1]L. Brillouin, Wave propagation in periodic structure, 2nded. Dover, New York (1953)
    [2]J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Modeling the folw of light, Princeton University Press, New Jersey (2005)
    [3]M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites”, Phys. Rev. Lett. Vol. 71, No.13, 2022 (1993)
    [4]M. S. Kushwaha, P. Halevi, “Band-gap engineering in periodic elastic composites”, Appl. Phys. Lett. Vol. 64, No. 9, 1805 (1994)
    [5]M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski, and B. Djafari-Rouhani, “Theory of acoustic band structure of periodic elastic composites”, Phys. Rev. B. Vol. 49, No. 4, 2313 (1994)
    [6]M. S. Kushwaha, “Classical band structure of periodic elastic composites”, International Journal of Modern Physics B Vol. 10, No. 9, 977 (1994)
    [7]M. S. Kushwaha, P. Halevi, “Giant acoustic stop bands in two-dimensional periodic arrays of liquid cylinders”, Appl. Phys. Lett. Vol. 69, No. 1, 31 (1996)
    [8]M. S. Kushwaha, “Stop-bands for periodic metallic rods: Sculptures that can filter the noise”, Appl. Phys. Lett. Vol. 70, No. 24, 3218 (1997)
    [9]M. S. Kushwaha, and B. Djafari-Rouhani, “Giant acoustic stop bands in two-dimensional periodic system of fluids”, Appl. Phys. Lett. Vol. 84, No. 9, 4677 (1998)
    [10]M. M. Sigalas, “Elastic wave band gaps and defect states in two-dimensional composites”, J. Acoust. Soc. Am. Vol. 101, No. 3, 1256 (1997)
    [11]M. M. Sigalas, “Defect states of acoustic waves in a two- dimensional lattice of solid cylinders”, J. Appl. Phys. Vol. 84, No. 6, 3026 (1998)
    [12]F. Wu, Z. Hou, Z. Liu, and Y. Liu, “Point defect states in two-dimensional phononic crystals”, Phys. Lett. A Vol. 292, No. 3, 198 (2001)
    [13]A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. D. Rouhani, “Guided elastic waves along a rod defect of a two-dimensional phononic crystal”, Phys. Rev. E vol. 69, No. 6, 067601 (2004)
    [14]X. Li, Z. Liu, “Coupling of cavity modes and guiding modes in two-dimensional phononic crystals”, Solid State Commun. Vol. 133, No. 6, 397 (2005)
    [15]J. Chen, and J.C. Cheng, “Dynamics of elastic waves in two-dimensional phononic crystals with chaotic defect”, Appl. Phys. Lett. Vol. 91, No. 12, 121902 (2007).
    [16]Y. C. Zhao, and L. B. Yuan, “Characteristics of multi-point defect modes in 2D phononic crystals”, J. Phys. D: Appl. Phys. Vol. 42, No. 1, 015403 (2009)
    [17]L. Y. Wu, L. W. Chen, and C. M. Liu, “Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions” Phys. Lett. A, Vol. 373,No. 12-13, 1189 (2009)
    [18]H. A. Sodano, D. J. Inman, and G. Park, “A Review of Power Harvesting from Vibration using Piezoelectric Materials”, The Shock and Vibration Digest, Vol. 36,No. 3, 197 (2004)
    [19]S. R. Anton1, and H. A. Sodano, “A review of power harvesting using piezoelectric materials (2003–2006)”, Smart Mater. Struct. Vol. 16, No. 3, R21 (2007)
    [20]H. A. Sodano, G. Park, and D. J. Inman, “Estimation of Electric Charge Output for Piezoelectric Energy Harvesting”, Strain Vol. 40, No. 2, 49 (2009)
    [21]M. Umeda, K.Nakamura, and S. Ueha, “Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator”, Jpn. J. Phys. Vol. 35, No. 5B, 3267 (1996)
    [22]M. Umeda, K.Nakamura, and S. Ueha, “Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration”, Jpn. J. Phys. Vol. 36, No. 5B (1997)
    [23]R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, “Harvesting raindrop energy: theory”, Smart Mater. Struct. Vol. 17, No. 1, 015038 (2008)
    [24]R. Guigon, J. J. Chaillout, T. Jager, and G. Despesse, “Harvesting raindrop energy: experimental study”, Smart Mater. Struct. Vol. 17, No. 1, 015039 (2008)
    [25]E. Minazara, D. Vasic , F. Costa, G. Poulin, “Piezoelectric diaphragm for vibration energy harvesting”, Ultrasonics Vol. 44, Sup. 1, e699 (2006)
    [26]Z. Wang, and Y. Xu, “Vibration energy harvesting device based on air-spaced piezoelectric cantilevers”, Appl. Phys. Lett. Vol. 90, No. 26, 263512 (2007)
    [27]Q. Zheng, and Y. Xu, “Asymmetric air-spaced cantilevers for vibration energy harvesting”, Smart Mater. Struct. Vol.17,No. 5, 055009 (2008)
    [28]T. J. Johnson, D. Charnegie, W. W. Clark, “Energy harvesting from mechanical vibrations using piezoelectric cantilever beams”, Proc. of SPIE Vol. 6169, 61690D (2006)
    [29]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, A. Taroni, “Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems”, Sensors and Actuators A Vol. 142, No. 1, 329 (2008)
    [30]S. N. Chen, G. J. Wang, M. C. Chien, “Analytical modeling of piezoelectric vibration-induced micro power generator”, Mechatronics Vol. 16, No. 7, 379 (2006)
    [31]A. Erturk, And D. J. Inman, “On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters”, J. Intell. Mater. Syst. Struct. Vol. 19, No. 11, 1311 (2008)
    [32]Z. G. Chen, Y. T. Hu, J. S. Yang, “Piezoelectric generator based on torsional modes for power harvesting from angular vibrations”, Appl. Math. mech., Vol. 28, No. 6,779 (2007)
    [33]F. Goldschmidtboeing, and P. Woias, “Characterization of different beam shapes for piezoelectric energy harvesting”, J. Micromech. Microeng. Vol.18, No. 10,104013 (2008)
    [34]Q. M. Wang and L. E. Cross, “Constitutive Equations of Symmetrical Triple Layer Piezoelectric Benders” , IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 46,No.6, 1343 (1999)
    [35]J. H. Lin, X. M. Wu, T. L. Ren, and L. T. Liu, “Modeling and Simulation of Piezoelectric MEMS Energy Harvesting Device”, Integr. Ferroelectr., Vol. 95,No. 1, 128 (2007)
    [36]F Lu, H.P. Lee and S P Lim, “Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications”, Smart Mater. Struct. Vol. 13, No. 1, 57 (2004)
    [37]M.S. Qatu, “In-plane vibration of slightly curved laminated composite beams”, J. Sound Vib., Vol. 159, No. 2, 327 (1992).
    [38]M.S. Qatu, “Theories and analysis of thin and moderately thick laminated composite curved beams”, Int. J. Solids Struct., Vol. 30, No. 20, 2743 (1993)
    [39]G. Washington, “Smart aperture antennas”, Smart Mater. Struct., Vol. 5,No. 6, 801 (1996)
    [40]P.H. Larson, J.R. Vinson, “Use of piezoelectric materials in curved beams and rings”, Adaptive Struct. Mater. Syst. ASME AD, Vol. 35,277 (1993)
    [41]A.J. Moskalik and D. Brei, “Quasi-static behavior of individual C-block piezoelectric actuators”, J. Intell. Mater. Syst. Struct., Vol. 8, No. 7, 571 (1997)
    [42]A.J. Moskalik and D. Brei, “Force-deflection behavior of piezoelectric C-block actuator arrays”, Smart Mater. Struct., Vol. 8, No. 5, 531 (1999)
    [43]F. Yanga, R. Sedaghatia, E. Esmailzadeh, “Free in-plane vibration of general curved beams using finite element method”, J. Sound Vib. , Vol. 318, No. 4-5, 850 (2008)
    [44]S. Y. Lee and J. Y. Hsiao, “Free in-plane vibrations of curved nonuniform beams”, Acta Mechanica, Vol. 155, No. 3-4, 173 (2002)
    [45]K. Susanto, “Vibration analysis of piezoelectric laminated slightly curved beams using distributed transfer function method”, Int. J. Solids. Struct. , Vol. 46, No. 6, 1564 (2009)
    [46]F.N. Gimena, P. Gonzaga, L. Gimena, “Numerical transfer-method with boundary conditions for arbitrary curved beam elements”, Eng. Anal. Bound. Elem. , Vol. 33, No. 2, 249 (2009)

    下載圖示 校內:2010-07-21公開
    校外:2010-07-21公開
    QR CODE