簡易檢索 / 詳目顯示

研究生: 戴鳳純
Tai, Feng-Chun
論文名稱: 磁性拓樸絕緣體MnSb2Te4與Mn(BixSb1-x)2Te4薄膜磊晶及其物理特性分析
Epitaxial growth and analysis of magnetic topological insulator MnSb2Te4 and Mn(BixSb1-x)2Te4 thin films
指導教授: 黃榮俊
Huang, Jung-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 拓樸絕緣體能帶結構分子束磊晶費米能階角分析光電子能譜
外文關鍵詞: magnetic topological insulator, band structure, Molecular beam epitaxy, surface state, ARPES
相關次數: 點閱:146下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體是一種表面導電內部絕緣的材料,若是加入磁性材料則會破壞時間反演對稱(Time-reversal symmetry),此時就會形成量子異常霍爾效應,拓樸軸子態這些特殊量子態。MnSb2Te4與Mn(BixSb1-x)2Te4預測為本質性磁性拓樸絕緣體。
    本實驗以分子束磊晶系統成長磁性拓樸絕緣體MnSb2Te4、Mn(BixSb1-X)2Te4薄膜,透過調控分壓比以及成長溫度得到晶向結構穩定的MnSb2Te4薄膜,再摻雜Bi元素形成四元磁性拓樸絕緣體,進行物理性質的分析。先以X光繞射儀(X-ray diffraction, XRD)進行晶格結構的分析,確認薄膜以C軸方向成長,透過調控Bi的分壓比觀察樣品結構的變化。藉由X射線光電子能譜儀(X-ray photoelectron spectrometer, XPS)及拉曼光譜儀(Raman spectrometer)確認薄膜的元素和聲子的光學震動模式。利用穿透式電子顯微鏡(Transmission electron microscope, TEM)確認薄膜為層狀結構以及樣品厚度,再使用能量散佈分析儀(Energy dispersive spectrometer, EDS)分析薄膜的化學成分,確認樣品的元素比例。使用原子力顯微鏡(Atomic force microscope, AFM)觀察薄膜表面因為溫度變化而影響薄膜的表面平整度,與觀察不同比例的Bi/Sb摻雜對表面平整度影響。使用角解析光電子能譜(Angle resolved photoemission spectroscopy, ARPES)量測MnSb2Te4與Mn(BixSb1-X)2Te4的能帶結構,由導帶與價帶間的能隙發現表面態存在,證明MnSb2Te4與Mn(BixSb1-X)2Te4皆為拓樸絕緣體,此外透過調控Bi的比例,可達到控制費米能階的位置,並證實MnSb2Te4為p型性質而MnBi2Te4為n型性質,最後利用超導量子干涉儀(Superconducting Quantum Interference Device, SQUID)確認薄膜整體磁性行為。

    In this study, MnSb2Te4 and Mn(BixSb1-x)2Te4 magnetic topological insulator thin films were grown on the sapphire(0001) substrate with molecular beam epitaxy(MBE) system. By controlling the growth temperature and flux ratio of Bi and Sb, the high quality and single-phase structure of MnSb2Te4 and Mn(BixSb1-x)2Te4 thin films are performed. Using X-ray diffraction (XRD), the single crystal along c-axis direction in thin films is confirmed and the structure change with adjusting the Bi flux ratio. The elements and the optical vibration modes of thin films are identified by X-ray photoelectron spectrometer (XPS) and Raman spectra. The layered structure and thickness of thin films are characterized with transmission electron microscope (TEM), and chemical composition is analyzed by energy dispersive spectrometer (EDS), which verifies the stoichiometry of thin films. The surface flatness of thin films is affected by the different growth temperature and Bi/Sb flux ratio from the observation of atomic force microscope (AFM). From angle resolved photoemission spectroscopy (AEPES) results, the surface state exist between conduction band and valence band, which certify both MnSb2¬Te4 and Mn (BixSb1-x)2Te4 are topological insulator. Moreover, the band structure of thin films becomes tailored on tuning the ratio of bismuth to antimony so that the variation of Fermi level EF position led to MnSb2Te4 is p-type and Mn (BixSb1-x)2Te4 in n-type properties. The magnetic behavior of the thin films was confirmed with Superconducting quantum interference device (SQUID).

    目錄 摘要 I Abstract II 致謝 VI 目錄 VII 第一章 緒論 1 1-1 拓樸絕緣體的特性與磁性拓樸絕緣體 1 1-2文獻回顧 4 1-2-1文獻一 4 1-2-2文獻二 7 1-2-3文獻三 11 1-3研究動機 15 第二章 實驗原理 16 2-1 薄膜成長原理 16 2-1-1薄膜沉積原理 16 2-1-2薄膜成長形式 17 2-2霍爾效應[1] 19 2-3磁性[37] 22 第三章 實驗流程與儀器介紹 26 3-1製程儀器與流程 26 3-1-1 分子束磊晶系統(Molecular beam epitaxy, MBE) 26 3-1-2 MBE樣品製造流程 30 3-2量測系統 32 3-2-1 X光繞射儀(X-ray diffractometer, XRD) 32 3-2-2 原子力顯微鏡(Atomic Force microscope, AFM) 34 3-2-3 X射線光電子能譜(X-ray photoelectron spectroscopy, XPS) 36 3-2-4 拉曼光譜儀(Raman spectrometer) 37 3-2-5角分析光電子能譜(Angle-resolved photoemission spectroscopy, ARPES) 39 3-2-6 穿透式電子顯微鏡(Transmission electron microscope, TEM) 41 3-2-7 超導量子干涉儀(Superconducting Quantum Interference Device Vibrating Sample Magnetometer, SQUID VSM) 43 第四章 實驗結果與討論 44 4-1實驗架構 44 4-2 Bi doped Mn (BixSb1-X)2Te4 (Bi=0.3~0.9) 45 4-3晶體結構 46 4-3-1 RHEED 46 4-3-2 XRD 47 4-3-3 TEM 50 4-4 表面形貌 52 4-4-1 AFM 52 4-5 元素組成 55 4-5-1 Raman 55 4-5-2 EDS 57 4-5-3 XPS 59 4-6 能帶結構 61 4-6-1 ARPES 61 4-7 磁性分析 62 4-7-1 SQUID 62 第五章 結論 64 第六章 參考文獻 65

    1. Chang, C.Z. and M. Li, Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators. J Phys Condens Matter, 2016. 28(12): p. 123002.
    2. Kane, C.L. and E.J. Mele, Quantum spin Hall effect in graphene. Phys Rev Lett, 2005. 95(22): p. 226801.
    3. Bernevig, B.A., T.L. Hughes, and S.C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006. 314(5806): p. 1757-61.
    4. Z2 Topological Order and the Quantum Spin Hall Effect.
    5. Ando, Y., Topological Insulator Materials. Journal of the Physical Society of Japan, 2013. 82(10).
    6. Hsieh, D., et al., Observation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3. Phys Rev Lett, 2009. 103(14): p. 146401.
    7. Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3. Science.
    8. Xia, Y., et al., Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 2009. 5(6): p. 398-402.
    9. Zhang, H., et al., Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 2009. 5(6): p. 438-442.
    10. 張泰榕, 拓樸絕緣體之能帶結構、輸運性質與 場效電晶體元件之介紹與研. 物理雙月刊.
    11. 黃榮俊, 拓樸材料與拓樸能帶理論. 物理雙月刊.
    12. Interplay between Different Magnetisms in Cr-Doped Topological Insulators. Nano Lett.
    13. Levy, I., et al., Compositional Control and Optimization of Molecular Beam Epitaxial Growth of (Sb2Te3)1–x(MnSb2Te4)x Magnetic Topological Insulators. Crystal Growth & Design, 2022. 22(5): p. 3007-3015.
    14. He, K., Y. Wang, and Q.-K. Xue, Quantum anomalous Hall effect. National Science Review, 2014. 1(1): p. 38-48.
    15. Chen, B., et al., Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat Commun, 2019. 10(1): p. 4469.
    16. Checkelsky, J.G., et al., Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nature Physics, 2014. 10(10): p. 731-736.
    17. Mogi, M., et al., Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Applied Physics Letters, 2015. 107(18).
    18. Wimmer, S., et al., Mn-Rich MnSb2 Te4 : A Topological Insulator with Magnetic Gap Closing at High Curie Temperatures of 45-50 K. Adv Mater, 2021. 33(42): p. e2102935.
    19. Rienks, E.D.L., et al., Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature, 2019. 576(7787): p. 423-428.
    20. Vickers, M.E., et al., Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering. Journal of Applied Physics, 2003. 94(3): p. 1565-1574.
    21. Evolution of Magnetic Interactions in Sb-substituted MnBi2Te4.
    22. Liu, Y., et al., Site Mixing for Engineering Magnetic Topological Insulators. Physical Review X, 2021. 11(2).
    23. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator.
    24. Haldane, F.D., Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the "parity anomaly". Phys Rev Lett, 1988. 61(18): p. 2015-2018.
    25. Discovery ofa Weyl fermion semimetal and topological Fermi arcs.
    26. Ruan, J., et al., Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat Commun, 2016. 7: p. 11136.
    27. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials.
    28. Zhang, D., et al., Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. Phys Rev Lett, 2019. 122(20): p. 206401.
    29. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science.
    30. Otrokov, M.M., et al., Prediction and observation of an antiferromagnetic topological insulator. Nature, 2019. 576(7787): p. 416-422.
    31. Lee, S.H., et al., Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator
    MnBi2Te4. Physical Review Research, 2019. 1(1).
    32. Lee, D.S., et al., Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm, 2013. 15(27).
    33. Gong, Y., et al., Experimental Realization of an Intrinsic Magnetic Topological Insulator*. Chinese Physics Letters, 2019. 36(7).
    34. Li, M., et al., Experimental verification of the van Vleck nature of long-range ferromagnetic order in the vanadium-doped three-dimensional topological insulator Sb(2)Te(3). Phys Rev Lett, 2015. 114(14): p. 146802.
    35. Litvinov, V.I., Magnetic exchange interaction in topological insulators. Physical Review B, 2014. 89(23).
    36. 林宗謀, 磊晶拓樸絕緣體(Sb1-xBix)2Te4. 2019, 國立成功大學.
    37. 蔡明潔, 磊晶反鐵磁拓樸絕緣體 MnBi2Te4 薄膜之結構與磁性電性研究. 2020, 國立成功大學.
    38. 許家傑, 磊晶拓樸絕緣體Cry(Sb1-xBix)2-yTe3之物理特性研究. 2020, 國立成功大學.
    39. 楊淵升, Band Structure and Magnetoelectric Analysis of Magnetic Topological Insulator Mn(Sb1-xBix)2Te4. 2022, National Cheng Kung University.
    40. Li, H., et al., Glassy magnetic ground state in layered compound MnSb2Te4. Science China Materials, 2021. 65(2): p. 477-485.
    41. Li, H., et al., Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys Chem Chem Phys, 2020. 22(2): p. 556-563.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE