| 研究生: |
林昶宇 Lin, Chang-Yu |
|---|---|
| 論文名稱: |
雙載子有機薄膜電晶體之研究 The study of ambipolar organic thin-film transistor |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 有機薄膜電晶體 、雙載子 |
| 外文關鍵詞: | organic thin-film transistor, ambipolar |
| 相關次數: | 點閱:88 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
利用閘極電壓控制載子的場效遷移率被廣泛的應用在有機薄膜電晶體(Organic thin-film transistor)中,然而本論文的動機是將發光半導體作為OTFT的作用層,利用閘極電壓提升發光半導體層的(場效)載子遷移率,這比傳統的OLED的本體載子遷移率(bulk charge mobility)高出許多,除此之外,由於雙載子(電子與電洞)的遷移率並不匹配(not match),而解決不匹配(不對稱)的載子遷移率也就需要一個結構上或物理特性上非對稱(asymmetric)的元件,一般OLED利用多層結構來控制兩種載子在預期的發光層結合放光,這些方法無非就是降低速度(遷移率)快的載子,與速度慢的載子在預期的半導體層結合;這都不是唯一可行的方法,若能由閘極電壓控制兩種不同載子的平衡才能有效的發揮有機發光層的效率,而且在電路設計的角度而言,整合OLED以及OTFT在同一個元件中,同時擁有電晶體特性,也可以發光的電晶體本身就是一個主動式1T(one transistor driving OLED)結構A可節省電路設計以及改善被動式畫面對比的缺點;此發光電晶體在效率提升後是機會應用在有機電激雷射(electrically pumped organic lasers)。而在有效控制發光效率之前,有兩個關鍵因素必須克服,一個重要的條件是有效的注入電子,另一個條件是閘極能有效的控制(誘導)傳導路徑(電洞聚集層以及電子聚集層)。本實驗將著重在有效注入雙載子(電子與電洞),所以我們在電極的選擇上,同時使用低功函數的金屬以及高功函數的金屬,期待在不對稱的元件中得到較對稱的載子遷移率。
none
參考文獻
[1]http://www.optics.org/articles/news/10/2/2/1.
[2http://www.bellsystemmemorial.com/belllabs_tran sistor.html.
[3]C. K. Chiang, C. R. Fincher, Y. W. Park,A.J. Heeger, H. Shirakawa, E.J.Louis, S. C. Gua and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977).
[4]C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. RES. & DEV. 45(1), 11, (2001)
[5]Christos D. Dimitrakopoulos and Patrick R. L. Malenfant, Adv. Mater. 2002, 14, No. 2, January 16.
[6]. H. Schˆn, C. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57.
[7]W. R. Salaneck, Contem. Phys. 30, 403, 1989.
[8]K. Y. Chung, and G. W. Neudeck, “Analytical modeling of α-Si:H thin-film transistors”, J. Appl. Phys. Vol. 62, pp. 4617-4624, 1987.
[9]M. Shur, M. Hack, and G. S. John,“A new analytic model for amorphous silicon thin-film transistors", J. Appl. Phys. Vol. 66, pp.3371-3380, 1989.
[10]P. G. Le Comber, and W. E. Spear,“Electronic transport in amorphous silicon films”, vol. 25, pp. 509-511, 1970
[11]G. Horowitz, R. Hajlaoui and P. Delannoy, J. Phys. III 5, 355 (1995).
[12]Gilles Horowitz,“Organic Field-Effect Transistors”, Advanced Materials, vol. 10, pp. 365-377, 1998.
[13]Gilles Horowitz,“Field-effect transistors based on short molecules”,J. Mater. Chem. Vol. 9, pp. 2021-2026, 1999.
[14]R. Brown,C.P.Tarrett,D.M.de Leeuw and M.Matters,”Field-effect transistors made from solution-processedorganic semiconductors,” Synth. Met., Vol. 88, pp.37-55,1997.
[15]P. G. Le Comber and W. E. Spear,” Electronic Transportin Amorphous SiliconFilms,” Phys. Rev. Lett., Vol. 25,pp. 509-511,1970.
[16]G. Horowitz and P. Delannoy, “An analytical model for organic-based thin-film transistors“ J. Appl. Phys., Vol.70,pp.469-475,1991.
[17]G. Horowitz, R. Hajlaoui and P. Delannoy, “Temperature-dependence of the Field-effect mobility of sexithiophene Determination of the density of traps,“ J. Phys. III, Vol.5, pp. 355-371, 1995.
[18]A. R. Brown,D.M.de Leeuw,E.E.Havinga and A.Pomp,“A universal relation between conductivity andfield-effect mobility in doped amorphous organic semiconductors“, Synth. Met.,Vol.68,pp.65-70,1994.
[19]M.C.J.M. Vissenberg and M. Matters, ”Theory of the field-effect mobility in amorphous organic transistors,”Phys. Rev. B, vol. 57, pp. 12964-12967, 1998.
[20]E. M. Suuberg, “Vapor pressures and enthalpies of solution of polycyclic aromatic hydrocarbons and their derivatives,” J. Chem. Eng. Data, vol.43, no. 3, pp. 486–492, 1998.
[21]Klauk, H. Halik, M. Zschieschang, U. Schmid, G. Radlik,
W.Brederlow , R. Briole, S. Pacha, C. Thewes, R. Weber,W.,” Polymer gate dielectric pentacene TFTs and circuits on flexible substrates “, Electron Devices Meeting,IEDM '02. Digest. pp. 557-560, 2002.
[22]R. A. Street and A.Salleo, Contact effects in polymer transistors ,APPLIED PHYSICS LETTERS,81,2887,2002
[23]C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913, 1987
[24]J. H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Mark, K. Mackay, R.N. Friend, P.L. Burn and A. B. Holmes, Nature, 347, 539, 1990.
[25]D. Braun, A.J. Heeger, Appl. Phys. Lett., 58, 1982, 1991.
[26]A. J. Heeger, D. Braun(UNIAX),WO-B 92/16023, 1992.
[27]S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
[28]R. A. Street and A.Salleo,APPLIED PHYSICS LETTERS,81,2887,2002
[29]E.J.MEIJER,D.M.DELEEUW,nature materials,2,678,2003.
[30]G. Yu, J. Gao, J.C. Hummelen, F. Wudl and A.J. Heeger, Science 270, 1789 (1995).
[31]Dodabalapur, A.,Katz, H. E., Torsi, L. & Haddon, R. C. Organic heterostructure field-effect transistors. Science 296, 1560.1562 (1995).
[32]Dodabalapur, A.,Katz, H. E., Torsi, L. & Haddon, R. C. Organic field-effect bipolar transistors. Appl.Phys. Lett. 68, 1108.1110 (1996).
校內:2014-07-07公開