| 研究生: |
陳宛宜 Chen, Wan-Yi |
|---|---|
| 論文名稱: |
合成之二維有機金屬框架/二硫化鉬複合材料於海水電解整體水分解之研究 Binder-Free Synthesis of Two-Dimensional Metal-Organic Framework/Molybdenum Disulfide Composites for Overall Water Splitting from Seawater Electrolysis |
| 指導教授: |
陳以文
Chen, Peter I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 二維片狀材料 、金屬有機框架 、產氧反應 、產氫反應 、整體海水分解 |
| 外文關鍵詞: | Two-Dimensional Nanosheet Materials, Metal-Organic Frameworks, Oxygen Evolution Reaction, Hydrogen Evolution Reaction, Overall Seawater Splitting |
| 相關次數: | 點閱:31 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海水電解作為實現大規模氫氣生產的可持續技術,已被廣泛認為是一種潛力巨大的綠色能源解決方案,尤其是在全球能源轉型和碳中和目標日益迫切的背景下。然而,儘管其具有可持續發展的優勢,海水電解在實際應用中面臨著一系列技術挑戰,尤其是由氯離子引發的腐蝕問題以及電催化劑的穩定性不足,這些挑戰限制了其長期運行的可行性。金屬有機框架 (Metal-Organic Framework, MOFs),特別是以鈷為中心的咪唑鹽類框架 (Co-Imidazolate Frameworks, CoZNS),由於其出色的高比表面積、豐富的金屬離子活性位點和抗氯性,展現了極大的潛力,成為電催化領域中一個具有前景的材料選擇。
本研究提出了一種創新的方法,成功合成了具有雙功能二維複合材料電催化劑,該催化劑由二維 CoZNS 和片狀二硫化鉬 (Molybdenum Disulfide, MoS2) 通過水熱反應即可原位生長於鎳泡沫 (Ni Foam, NF) 基板上,形成了 CoZMNS@NF 複合材料。這獨特的二維奈米片結構不僅有效暴露了大量的活性位點,還能加速電荷分離,進一步促進了質傳過程,顯著提高了整體反應動力學。這種新型的複合結構不僅提高了催化性能,還解決了傳統材料在電解過程中面臨的穩定性問題,進一步擴展了海水電解技術的應用前景。
在三電極系統中測試催化劑的電催化表現時,CoZMNS@NF 催化劑在電流密度為 10 mA/cm2 的條件下,對於產氫反應 (Hydrogen Evolution Reaction, HER) 與產氧反應 (Oxygen Evolution Reaction, OER) 分別展現出 -0.187 V 及 1.440 V 的過電位。更值得一提的是,在雙電極系統中,當施加 1.631 V 的電壓時,該催化劑可穩定運作至少 80 小時,展現出優異的長期穩定性與抗氯腐蝕能力。這些實驗結果顯示,CoZMNS@NF 具備作為高效、穩定且可長時間運作之海水電解催化劑的潛力,為實現無需依賴純水的大規模綠氫製造提供了具體可行的技術方案,對於推動永續能源的發展具有重要的學術與應用價值。
Seawater electrolysis presents a sustainable pathway for large-scale hydrogen production, though its practical deployment is hindered by challenges such as chloride-induced corrosion and catalyst instability. Metal-organic frameworks (MOFs), particularly Co-imidazolate frameworks, have shown significant promise as electrocatalysts due to their high surface area, abundant active sites, and ability to resist chloride ion interference. In this work, we report the synthesis of a two-dimensional, durable, bifunctional electrocatalyst through a hydrothermal process, in which a cobalt-imidazolate framework (CoZNS) and molybdenum disulfide (MoS2) composite are in-situ synthesized on nickel foam (NF), yielding CoZMNS@NF. The tailored nanosheet architecture exposes a high density of active sites, promotes efficient charge separation, and facilitates mass transport, thereby enhancing overall reaction kinetics. The CoZMNS@NF catalyst demonstrates low overpotentials of -0.187 V for hydrogen evolution and 1.440 V for oxygen evolution at a current density of 10 mA/cm2. Notably, CoZMNS@NF maintains stable operation in real seawater for over 80 hours at an applied voltage of 1.631 V, exhibiting exceptional durability and chloride tolerance. These results highlight CoZMNS@NF as a promising electrocatalytic platform for efficient, long-term seawater electrolysis, offering a scalable route to green hydrogen production without reliance on purified water.
[1] Wang, A.; Ma, Y.; Zhao, D., Pore Engineering of Porous Materials: Effects and Applications. ACS Nano 18, 22829-22854, 2024.
[2] Xu, Z.; Ye, Y.; Liu, Y.; Liu, H.; Jiang, S., Design and Assembly of Porous Organic Cages. Chem. Commun. 60, 2261-2282, 2024.
[3] Yu, J.; Corma, A.; Li, Y., Functional Porous Materials Chemistry. Adv. Mater. 32, 2006277, 2020.
[4] Menzel, N.; Ortel, E.; Kraehnert, R.; Strasser, P., Electrocatalysis Using Porous Nanostructured Materials. ChemPhysChem 13, 1385-1394, 2012.
[5] Yusuf, V. F.; Malek, N. I.; Kailasa, S. K., Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega 7, 44507-44531, 2022.
[6] Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D., Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 120, 8814-8933, 2020.
[7] Meng, F.; Shen, Z.; Gao, W.; Yang, X.; Yi, H.; Zhao, S.; Tang, X.; Yu, Q., Mesoporous Molecular Sieves for Indoor Air Purification: Adsorption and Catalysis. J. Solid State Chem. 347, 125300, 2025.
[8] Liu, T.; Ding, J.; Su, Z.; Wei, G., Porous Two-Dimensional Materials for Energy Applications: Innovations and Challenges. Mater. Today Energy 6, 79-95, 2017.
[9] Kumar, S.; Sharma, A.; Gautam, D.; Hooda, S., Characterization of Mesoporous Materials. Cham; pp 175-204 2022.
[10] Adegoke, K. A.; Maxakato, N. W., Porous Metal Oxide Electrocatalytic Nanomaterials for Energy Conversion: Oxygen Defects and Selection Techniques. Coord. Chem. Rev. 457, 214389, 2022.
[11] James, S. L., Metal-Organic Frameworks. Chem. Soc. Rev. 32, 276-288, 2003.
[12] Haghighi, E.; Zeinali, S., Nanoporous MIL-101(Cr) as a Sensing Layer Coated on a Quartz Crystal Microbalance (QCM) Nanosensor to Detect Volatile Organic Compounds (VOCs). RSC Adv. 9, 24460-24470, 2019.
[13] Yañez-Aulestia, A.; Trejos, V. M.; Esparza-Schulz, J. M.; Ibarra, I. A.; Sánchez-González, E., Chemically Modified HKUST-1(Cu) for Gas Adsorption and Separation: Mixed-Metal and Hierarchical Porosity. ACS Appl. Mater. Interfaces 16, 65581-65591, 2024.
[14] Chen, J.; Li, Y., The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and Development. Chem. Rec. 16, 1456-1476, 2016.
[15] Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M., The Chemistry and Applications of Metal-Organic Frameworks. Science 341, 1230444, 2013.
[16] Yang, D.; Gates, B. C., Analyzing Stabilities of Metal-Organic Frameworks: Correlation of Stability with Node Coordination to Linkers and Degree of Node Metal Hydrolysis. J. Phys. Chem. C 128, 8551-8559, 2024.
[17] Silva, P.; Vilela, S. M. F.; Tomé, J. P. C.; Almeida Paz, F. A., Multifunctional Metal-Organic Frameworks: From Academia to Industrial Applications. Chem. Soc. Rev. 44, 6774-6803, 2015.
[18] Zhang, X.; Chen, Z.; Liu, X.; Hanna, S. L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O. K., A Historical Overview of the Activation and Porosity of Metal-Organic Frameworks. Chem. Soc. Rev. 49, 7406-7427, 2020.
[19] Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P., Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 556, 43-50, 2018.
[20] Wang, H.; Chen, D.-R.; Lin, Y.-C.; Lin, P.-H.; Chang, J.-T.; Muthu, J.; Hofmann, M.; Hsieh, Y.-P., Enhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fields. ACS Nano 18, 19828-19835, 2024.
[21] Shi, C.; Duyar, M. S.; Wang, X.; Ye, S.; Hu, M.; Liu, J., Design of Two-Dimensional Metal-Organic Framework Nanosheets for Emerging Applications. FlatChem 29, 100287, 2021.
[22] Guo, B., 2D Noncarbon Materials-Based Nonlinear Optical Devices for Ultrafast Photonics [Invited]. Chin. Opt. Lett. 16, 020004, 2018.
[23] Wang, Y.; Ma, J.; Jin, F.; Li, T.; Javanmardi, N.; He, Y.; Zhu, G.; Zhang, S.; Xu, J.-D.; Wang, T.; Feng, Z.-Q., Recent Advances in the Synthesis and Application of Monolayer 2D Metal-Organic Framework Nanosheets. Small Sci. 4, 2400132, 2024.
[24] Mei, J.; Zhang, S.; Pan, G.; Cheng, Z.; Chen, J.; Zhao, J., Surfactant-Assisted Synthesis of MOF-Derived CeO2 for Low-Temperature Catalytic O-Xylene Combustion. J. Environ. Chem. Eng. 10, 108743, 2022.
[25] Wang, Z.; Wang, G.; Qi, H.; Wang, M.; Wang, M.; Park, S.; Wang, H.; Yu, M.; Kaiser, U.; Fery, A.; Zhou, S.; Dong, R.; Feng, X., Ultrathin Two-Dimensional Conjugated Metal-Organic Framework Single-Crystalline Nanosheets Enabled by Surfactant-Assisted Synthesis. Chem. Sci. 11, 7665-7671, 2020.
[26] Luo, Q.; Ding, Z.; Sun, H.; Cheng, Z.; Shi, N.; Song, C.; Han, M.; Gu, D.; Yi, M.; Sun, Y.; Xie, L.; Huang, W., A Small Molecule with a Big Scissoring Effect: Sodium Dodecyl Sulfate Working on Two-Dimensional Metal-Organic Frameworks. CrystEngComm 23, 1360-1365, 2021.
[27] Liang, R.; Liang, Z.; Chen, F.; Xie, D.; Wu, Y.; Wang, X.; Yan, G.; Wu, L., Sodium Dodecyl Sulfate-Decorated MOF-Derived Porous Fe2O3 Nanoparticles: High Performance, Recyclable Photocatalysts for Fuel Denitrification. Chin. J. Catal. 41, 188-199, 2020.
[28] Woo, H.; Devlin, A. M.; Matzger, A. J., In Situ Observation of Solvent Exchange Kinetics in a MOF with Coordinatively Unsaturated Sites. J. Am. Chem. Soc. 145, 18634-18641, 2023.
[29] Hao, Z.; Song, S.; Li, B.; Jia, Q.-X.; Zheng, T.; Zhang, Z., A Solvent Driven Dual Responsive Actuator Based on MOF/Polymer Composite. Sens. Actuators B: Chem. 358, 131448, 2022.
[30] Hwang, J.; Yan, R.; Oschatz, M.; Schmidt, B. V. K. J., Solvent Mediated Morphology Control of Zinc MOFs as Carbon Templates for Application in Supercapacitors. J. Mater. Chem. A 6, 23521-23530, 2018.
[31] Kuruppathparambil, R. R.; Jose, T.; Babu, R.; Hwang, G.-Y.; Kathalikkattil, A. C.; Kim, D.-W.; Park, D.-W., A Room Temperature Synthesizable and Environmental Friendly Heterogeneous ZIF-67 Catalyst for the Solvent Less and Co-Catalyst Free Synthesis of Cyclic Carbonates. Appl. Catal. B: Environ. 182, 562-569, 2016.
[32] Frank, S.; Folkjær, M.; Nielsen, M. L. N.; Marks, M. J.; Jeppesen, H. S.; Ceccato, M.; Billinge, S. J. L.; Catalano, J.; Lock, N., Correlating the Structural Transformation and Properties of ZIF-67 During Pyrolysis, Towards Electrocatalytic Oxygen Evolution. J. Mater. Chem. A 12, 781-794, 2024.
[33] Qian, J.; Sun, F.; Qin, L., Hydrothermal Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Nanocrystals. Mater. Lett. 82, 220-223, 2012.
[34] Zhong, G.; Liu, D.; Zhang, J., The Application of ZIF-67 and its Derivatives: Adsorption, Separation, Electrochemistry and Catalysts. J. Mater. Chem. A 6, 1887-1899, 2018.
[35] Qin, J.; Wang, S.; Wang, X., Visible-light Reduction CO2 with Dodecahedral Zeolitic Imidazolate Framework ZIF-67 as an Efficient Co-Catalyst. Appl. Catal. B: Environ. 209, 476-482, 2017.
[36] Duan, C.; Yu, Y.; Hu, H., Recent Progress on Synthesis of ZIF-67-Based Materials and Their Application to Heterogeneous Catalysis. Green Energy Environ. 7, 3-15, 2022.
[37] Yang, X.; Jiang, S.; Zhang, Z.; Li, B.; Xu, M., The Preparation of ZIF-67 and its Synergistic Effect on Fire Performance of Intumescent Flame Retardant Polypropylene. J. Therm. Anal. Calorim. 148, 9547-9560, 2023.
[38] Liu, Z.; Sun, D.; Wang, C.; You, B.; Li, B.; Han, J.; Jiang, S.; Zhang, C.; He, S., Zeolitic Imidazolate Framework-67 and its Derivatives for Photocatalytic Applications. Coord. Chem. Rev. 502, 215612, 2024.
[39] Jadhav, H. S.; Bandal, H. A.; Ramakrishna, S.; Kim, H., Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. Adv. Mater. 34, 2107072, 2022.
[40] Pham, T.; Brown, J., Hydrogen Sensors Using 2‐Dimensional Materials: A Review. ChemistrySelect 5, 7277-7297, 2020.
[41] Li, W.; Huang, Y.; Liu, Y.; Tekell, M. C.; Fan, D., Three Dimensional Nanosuperstructures Made of Two-Dimensional Materials by Design: Synthesis, Properties, and Applications. Nano Today 29, 100799, 2019.
[42] Han, S. A.; Bhatia, R.; Kim, S.-W., Synthesis, Properties and Potential Applications of Two-Dimensional Transition Metal Dichalcogenides. Nano Converg. 2, 17, 2015.
[43] Mondal, A.; Vomiero, A., 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 32, 2208994, 2022.
[44] Deng, Q.; Li, Z.; Huang, R.; Li, P.; Gomaa, H.; Wu, S.; An, C.; Hu, N., Research Progress of Transition-Metal Dichalcogenides for the Hydrogen Evolution Reaction. J. Mater. Chem. A 11, 24434-24453, 2023.
[45] Wang, Z.; Tang, M. T.; Cao, A.; Chan, K.; Nørskov, J. K., Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. The Journal of Physical Chemistry C 126, 5151-5158, 2022.
[46] Joseph, S.; Mohan, J.; Lakshmy, S.; Thomas, S.; Chakraborty, B.; Thomas, S.; Kalarikkal, N., A Review of the Synthesis, Properties, and Applications of 2D Transition Metal Dichalcogenides and Their Heterostructures. Mater. Chem. Phys. 297, 127332, 2023.
[47] Qian, X.; Liu, J.; Fu, L.; Li, J., Quantum Spin Hall Effect in Two-Dimensional Transition Metal Dichalcogenides. Science 346, 1344-1347, 2014.
[48] Lin, L.; Sherrell, P.; Liu, Y.; Lei, W.; Zhang, S.; Zhang, H.; Wallace, G. G.; Chen, J., Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Adv. Energy Mater. 10, 1903870, 2020.
[49] Zhang, J.; Wu, J.; Guo, H.; Chen, W.; Yuan, J.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J., Unveiling Active Sites for the Hydrogen Evolution Reaction on Monolayer MoS2. Adv. Mater. 29, 1701955, 2017.
[50] Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J., Understanding Catalysis in a Multiphasic Two-Dimensional Transition Metal Dichalcogenide. Nat. Commun. 6, 8311, 2015.
[51] Chen, I. W. P.; Li, Y.-H.; Su, Y.-L.; Huang, G.-X., Layer-by-Layer Exfoliation of Transition-Metal Dichalcogenides by Amino Acid in Water for Promoting Hydrogen Evolution Reaction. J. Phys. Chem. C 126, 6207-6214, 2022.
[52] Li, G.; Zhang, D.; Qiao, Q.; Yu, Y.; Peterson, D.; Zafar, A.; Kumar, R.; Curtarolo, S.; Hunte, F.; Shannon, S.; Zhu, Y.; Yang, W.; Cao, L., All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. J. Am. Chem. Soc. 138, 16632-16638, 2016.
[53] Sun, Y.; Alimohammadi, F.; Zhang, D.; Guo, G., Enabling Colloidal Synthesis of Edge-Oriented MoS2 with Expanded Interlayer Spacing for Enhanced HER Catalysis. Nano Lett. 17, 1963-1969, 2017.
[54] Sui, X.; Downing, J. R.; Hersam, M. C.; Chen, J., Additive Manufacturing and Applications of Nanomaterial-Based Sensors. Mater. Today 48, 135-154, 2021.
[55] Cao, Y., Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts. ACS Nano 15, 11014-11039, 2021.
[56] Wang, T.; Chen, S.; Pang, H.; Xue, H.; Yu, Y., MoS2 -Based Nanocomposites for Electrochemical Energy Storage. Adv. Sci. 4, 1600289, 2016.
[57] Fan, X.; Xu, P.; Zhou, D.; Sun, Y.; Li, Y. C.; Nguyen, M. A. T.; Terrones, M.; Mallouk, T. E., Fast and Efficient Preparation of Exfoliated 2H MoS2 Nanosheets by Sonication-Assisted Lithium Intercalation and Infrared Laser-Induced 1T to 2H Phase Reversion. Nano Lett. 15, 5956-5960, 2015.
[58] Duan, X.; Zhang, H., Introduction: Two-Dimensional Layered Transition Metal Dichalcogenides. Chem. Rev. 124, 10619-10622, 2024.
[59] Lasek, K.; Li, J.; Kolekar, S.; Coelho, P. M.; Guo, L. a.; Zhang, M.; Wang, Z.; Batzill, M., Synthesis and Characterization of 2D Transition Metal Dichalcogenides: Recent Progress from a Vacuum Surface Science Perspective. Surf. Sci. Rep. 76, 100523, 2021.
[60] Yang, R.; Fan, Y.; Zhang, Y.; Mei, L.; Zhu, R.; Qin, J.; Hu, J.; Chen, Z.; Ng, Y. H.; Voiry, D.; Li, S.; Lu, Q.; Wang, Q.; Yu, J.; Zeng, Z., 2D Transition Metal Dichalcogenides for Photocatalysis. Angew. Chem. - Int. Ed. 62, 2023.
[61] Zhang, H.; Luo, Y.; Chu, P. K.; Liu, Q.; Liu, X.; Zhang, S.; Luo, J.; Wang, X.; Hu, G., Recent Advances in Non-Noble Metal-Based Bifunctional Electrocatalysts for Overall Seawater Splitting. J. Alloys Compd. 922, 166113, 2022.
[62] Sun, L.; Luo, Q.; Dai, Z.; Ma, F., Material Libraries for Electrocatalytic Overall Water Splitting. Coord. Chem. Rev. 444, 214049, 2021.
[63] Liu, Z.; Tan, H.; Liu, D.; Liu, X.; Xin, J.; Xie, J.; Zhao, M.; Song, L.; Dai, L.; Liu, H., Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCo-Nitrides Nanoparticle/NiCo2O4 Nanoflake/Graphite Fibers. Adv. Sci. 6, 1801829, 2019.
[64] Jamesh, M.-I.; Kuang, Y.; Sun, X., Constructing Earth-Abundant 3D Nanoarrays for Efficient Overall Water Splitting-A Review. ChemCatChem 11, 1550-1575, 2019.
[65] Lakhan, M. N.; Hanan, A.; Hussain, A.; Ali Soomro, I.; Wang, Y.; Ahmed, M.; Aftab, U.; Sun, H.; Arandiyan, H., Transition Metal-Based Electrocatalysts for Alkaline Overall Water Splitting: Advancements, Challenges, and Perspectives. Chem. Commun. 60, 5104-5135, 2024.
[66] Bie, C.; Wang, L.; Yu, J., Challenges for Photocatalytic Overall Water Splitting. Chem 8, 1567-1574, 2022.
[67] Li, X.; Zhao, L.; Yu, J.; Liu, X.; Zhang, X.; Liu, H.; Zhou, W., Water Splitting: From Electrode to Green Energy System. Nano-Micro Lett. 12, 131, 2020.
[68] Cui, Z.; Jiao, W.; Huang, Z.; Chen, G.; Zhang, B.; Han, Y.; Huang, W., Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. Small 19, 2301465, 2023.
[69] Zhang, Y.; Fu, J.; Zhao, H.; Jiang, R.; Tian, F.; Zhang, R., Tremella-like Ni3S2/MnS with Ultrathin Nanosheets and Abundant Oxygen Vacancies Directly Used for High Speed Overall Water Splitting. Appl. Catal. B: Environ. 257, 117899, 2019.
[70] Gunaseelan, H.; Munde, A. V.; Patel, R.; Sathe, B. R., Metal-Organic Framework Derived Carbon-Based Electrocatalysis for Hydrogen Evolution Reactions: A Review. Mater. Today Sustain. 22, 100371, 2023.
[71] Kazemi, A.; Manteghi, F.; Tehrani, Z., Metal Electrocatalysts for Hydrogen Production in Water Splitting. ACS Omega 9, 7310-7335, 2024.
[72] Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. ACS Catal. 4, 3957-3971, 2014.
[73] Bao, F.; Kemppainen, E.; Dorbandt, I.; Bors, R.; Xi, F.; Schlatmann, R.; van de Krol, R.; Calnan, S., Understanding the Hydrogen Evolution Reaction Kinetics of Electrodeposited Nickel-Molybdenum in Acidic, Near-Neutral, and Alkaline Conditions. ChemElectroChem 8, 195-208, 2021.
[74] Wang, Y.; Jia, Q.; Gao, G.; Zhang, Y.; Zhang, L.; Lu, S.; Fang, L., Theoretical Advances in MBenes for Hydrogen Evolution Electrocatalysis. Energies 17, 5492, 2024.
[75] Smiljanić, M.; Panić, S.; Bele, M.; Ruiz-Zepeda, F.; Pavko, L.; Gašparič, L.; Kokalj, A.; Gaberšček, M.; Hodnik, N., Improving the HER Activity and Stability of Pt Nanoparticles by Titanium Oxynitride Support. ACS Catal. 12, 13021-13033, 2022.
[76] Cui, C.; Hu, X.; Wen, L., Recent Progress on Nanostructured Bimetallic Electrocatalysts for Water Splitting and Electroreduction of Carbon Dioxide. J. Semicond. 41, 091705, 2020.
[77] Pomerantseva, E.; Resini, C.; Kovnir, K.; Kolen'ko, Y. V., Emerging Nanostructured Electrode Materials for Water Electrolysis and Rechargeable Beyond Li-Ion Batteries. Adv. Phys.: X 2, 211-253, 2017.
[78] Bandal, H.; Reddy, K. K.; Chaugule, A.; Kim, H., Iron-Based Heterogeneous Catalysts for Oxygen Evolution Reaction; Change in Perspective from Activity Promoter to Active Catalyst. J. Power Sources 395, 106-127, 2018.
[79] Lee, W. H.; Ko, Y.-J.; Kim, J.-Y.; Min, B. K.; Hwang, Y. J.; Oh, H.-S., Single-Atom Catalysts for the Oxygen Evolution Reaction: Recent Developments and Future Perspectives. Chem. Commun. 56, 12687-12697, 2020.
[80] Liu, G., Oxygen Evolution Reaction Electrocatalysts for Seawater Splitting: A Review. J. Electroanal. Chem. 923, 116805, 2022.
[81] Vazhayil, A.; Vazhayal, L.; Thomas, J.; Ashok C, S.; Thomas, N., A Comprehensive Review on the Recent Developments in Transition Metal-Based Electrocatalysts for Oxygen Evolution Reaction. Appl. Surf. Sci. Adv. 6, 100184, 2021.
[82] Zhang, Q.; You, J.; Zhang, X.; Yi, B.; Zhao, Y.; Li, Y.; Zhang, H., Research Progress of High-Entropy Oxides as Oxygen Evolution Reaction Catalysts. Energy Fuels 38, 6659-6678, 2024.
[83] Fabbri, E.; Schmidt, T. J., Oxygen Evolution Reaction-The Enigma in Water Electrolysis. ACS Catal. 8, 9765-9774, 2018.
[84] Vadakkayil, A.; Dunlap-Shohl, W. A.; Joy, M.; Bloom, B. P.; Waldeck, D. H., Improved Catalyst Performance for the Oxygen Evolution Reaction under a Chiral Bias. ACS Catal. 14, 17303-17309, 2024.
[85] Ismail, N.; Qin, F.; Fang, C.; Liu, D.; Liu, B.; Liu, X.; Wu, Z. l.; Chen, Z.; Chen, W., Electrocatalytic Acidic Oxygen Evolution Reaction: From Nanocrystals to Single Atoms. Aggregate 2, 2021.
[86] Wen, N.; Jiao, X.; Xia, Y.; Chen, D., Electrocatalysts for the Oxygen Evolution Reaction: Mechanism, Innovative Strategies, and Beyond. Mater. Chem. Front. 7, 4833-4864, 2023.
[87] Li, J.; Tian, W.; Li, Q.; Zhao, S., Acidic Oxygen Evolution Reaction: Fundamental Understanding and Electrocatalysts Design. ChemSusChem 17, e202400239, 2024.
[88] Raveendran, A.; Chandran, M.; Dhanusuraman, R., A Comprehensive Review on the Electrochemical Parameters and Recent Material Development of Electrochemical Water Splitting Electrocatalysts. RSC Adv. 13, 3843-3876, 2023.
[89] Adiga, P.; Nunn, W.; Wong, C.; Manjeshwar, A. K.; Nair, S.; Jalan, B.; Stoerzinger, K. A., Breaking OER and CER Scaling Relations via Strain and its Relaxation in RuO2 (101). Mater. Today Energy 28, 101087, 2022.
[90] Wu, D.; Chen, D.; Zhu, J.; Mu, S., Ultralow Ru Incorporated Amorphous Cobalt-Based Oxides for High-Current-Density Overall Water Splitting in Alkaline and Seawater Media. Small 17, 2102777, 2021.
[91] Bahuguna, G.; Patolsky, F., Why Today’s “Water” in Water Splitting is not Natural Water? Critical Up-to-Date Perspective and Future Challenges for Direct Seawater Splitting. Nano Energy 117, 108884, 2023.
[92] Hausmann, J. N.; Schlögl, R.; Menezes, P. W.; Driess, M., Is Direct Seawater Splitting Economically Meaningful? Energy Environ. Sci. 14, 3679-3685, 2021.
[93] Exner, K., Controlling Stability and Selectivity in the Competing Chlorine and Oxygen Evolution Reaction over Transition Metal Oxide Electrodes. ChemElectroChem 6, 2019.
[94] Corbin, J.; Jones, M.; Lyu, C.; Loh, A.; Zhang, Z.; Zhu, Y.; Li, X., Challenges and Progress in Oxygen Evolution Reaction Catalyst Development for Seawater Electrolysis for Hydrogen Production. RSC Adv. 14, 6416-6442, 2024.
[95] Liang, R.; Fan, J.; Lei, F.; Li, P.; Fu, C.; Lu, Z.; Hao, W., Fabrication of Ultra-Stable and High-Efficient CoP-Based Electrode Toward Seawater Splitting at Industrial-Grade Current Density. J. Colloid Interface Sci. 645, 227-240, 2023.
[96] Abdol Rahim, A. H.; Tijani, A. S.; Kamarudin, S. K.; Hanapi, S., An Overview of Polymer Electrolyte Membrane Electrolyzer for Hydrogen Production: Modeling and Mass Transport. J. Power Sources 309, 56-65, 2016.
[97] Fikry, M.; García-Padilla, Á.; Herranz, J.; Khavlyuk, P.; Eychmüller, A.; Schmidt, T. J., A Comprehensive Analysis of the Overpotential Losses in Polymer Electrolyte Fuel Cells. ACS Catal. 14, 1903-1913, 2024.
[98] Yu, J.; He, Q.; Yang, G.; Zhou, W.; Shao, Z.; Ni, M., Recent Advances and Prospective in Ruthenium-Based Materials for Electrochemical Water Splitting. ACS Catal. 2019, 2019.
[99] Lv, H.; Chen, J.; Zhou, W.; Shen, X.; Zhang, C., Mechanism Analyses and Optimization Strategies for Performance Improvement in Low-Temperature Water Electrolysis Systems via the Perspective of Mass Transfer: A review. Renew. Sustain. Energy Rev. 183, 113394, 2023.
[100] van der Heijden, O.; Park, S.; Vos, R. E.; Eggebeen, J. J. J.; Koper, M. T. M., Tafel Slope Plot as a Tool to Analyze Electrocatalytic Reactions. ACS Energy Lett. 9, 1871-1879, 2024.
[101] Buchanan, R. A.; Stansbury, E. E., 4 - Electrochemical Corrosion. In Handbook of Environmental Degradation of Materials (Second Edition), Kutz, M., Ed. William Andrew Publishing: Oxford; pp 87-125 2012.
[102] Singha Roy, S.; Madhu, R.; Karmakar, A.; Kundu, S., From Theory to Practice: A Critical and Comparative Assessment of Tafel Slope Analysis Techniques in Electrocatalytic Water Splitting. ACS Materials Lett. 6, 3112-3123, 2024.
[103] Akhtar, K.; Khan, S. A.; Khan, S. B.; Asiri, A. M., Scanning Electron Microscopy: Principle and Applications in Nanomaterials Characterization. In Handbook of Materials Characterization, Sharma, S. K., Ed. Springer International Publishing: Cham; pp 113-145 2018.
[104] Shiraki, I.; Nagao, T.; Hasegawa, S.; Petersen, C.; Bøggild, P.; Hansen, T.; Hansen, F., Micro-Four-Point Probes in a UHV Scanning Electron Microscope for In-Situ Surface-Conductivity Measurements. Surf. Rev. Lett. 7, 533-537, 2000.
[105] Munir, N.; Hanif, M.; Dias, D. A.; Abideen, Z., The role of Halophytic Nanoparticles Towards the Remediation of Degraded and Saline Agricultural Lands. Environ. Sci. Pollut. Res. 28, 60383-60405, 2021.
[106] Harrington, G. F.; Santiso, J., Back-to-Basics Ttorial: X-ray Diffraction of Thin Films. J. Electroceramics 47, 141-163, 2021.
[107] Braeuer, A., Chapter 3 - Raman Spectroscopy From an Engineering Point of View. In Supercritical Fluid Science and Technology, Braeuer, A., Ed. Elsevier: Vol. 7, pp 193-281 2015.
[108] Littleford, R. E.; Graham, D.; Smith, W. E.; Khan, I., RAMAN SPECTROSCOPY | Surface-Enhanced. In Encyclopedia of Analytical Science (Second Edition), Worsfold, P.; Townshend, A.; Poole, C., Eds. Elsevier: Oxford; pp 110-118 2005.
[109] Liu, K.; Zhao, Q.; Li, B.; Zhao, X., Raman Spectroscopy: A Novel Technology for Gastric Cancer Diagnosis. Front. Bioeng. Biotechnol. 10, 856591, 2022.
[110] Joya, K. S.; Sala, X., In situ Raman and Surface-Enhanced Raman Spectroscopy on Working Electrodes: Spectroelectrochemical Characterization of Water Oxidation Electrocatalysts. Phys. Chem. Chem. Phys. 17, 21094-21103, 2015.
[111] Bazylewski, P.; Divigalpitiya, R.; Fanchini, G., In situ Raman Spectroscopy Distinguishes Between Reversible and Irreversible Thiol Modifications in l-Cysteine. RSC Adv. 7, 2964-2970, 2017.
[112] Cheng, Y.; Chen, H.; Zhang, L.; Xu, X.; Cheng, H.; Yan, C.; Qian, T., Evolution of Grain Boundaries Promoted Hydrogen Production for Industrial‐Grade Current Density. Adv. Mater. 36, 2024.
[113] Ojeda, J. J.; Dittrich, M., Fourier Transform Infrared Spectroscopy for Molecular Analysis of Microbial Cells. In Microbial Systems Biology: Methods and Protocols, Navid, A., Ed. Humana Press: Totowa, NJ; pp 187-211 2012.
[114] Mohamed, M. A.; Jaafar, J.; Ismail, A. F.; Othman, M. H. D.; Rahman, M. A., Chapter 1 - Fourier Transform Infrared (FTIR) Spectroscopy. In Membrane Characterization, Hilal, N.; Ismail, A. F.; Matsuura, T.; Oatley-Radcliffe, D., Eds. Elsevier: pp 3-29 2017.
[115] Zapata, F.; López-Fernández, A.; Ortega-Ojeda, F.; Quintanilla, G.; García-Ruiz, C.; Montalvo, G., Introducing ATR-FTIR Spectroscopy through Analysis of Acetaminophen Drugs: Practical Lessons for Interdisciplinary and Progressive Learning for Undergraduate Students. J. Chem. Educ. 98, 2675-2686, 2021.
[116] Glassford, S. E.; Byrne, B.; Kazarian, S. G., Recent Applications of ATR FTIR Spectroscopy and Imaging to Proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834, 2849-2858, 2013.
[117] Mudunkotuwa, I. A.; Minshid, A. A.; Grassian, V. H., ATR-FTIR Spectroscopy as a Tool to Probe Surface Adsorption on Nanoparticles at the Liquid–Solid Interface in Environmentally and Biologically Relevant Media. Analyst 139, 870-881, 2014.
[118] Bieberle-Hütter, A.; Bronneberg, A. C.; George, K.; van de Sanden, M. C. M., Operando Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) Spectroscopy for Water Splitting. J. Phys. D: Appl. Phys. 54, 133001, 2021.
[119] Greczynski, G.; Hultman, L., X-ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 107, 100591, 2020.
[120] Greczynski, G.; Haasch, R. T.; Hellgren, N.; Lewin, E.; Hultman, L., X-ray Photoelectron Spectroscopy of Thin Films. Nat Rev Methods Primers 3, 40, 2023.
[121] Leech, M. C.; Lam, K., A Practical Guide to Electrosynthesis. Nat. Rev. Chem. 6, 275-286, 2022.
[122] Lv, H.; Pan, Q.; Song, Y.; Liu, X.-X.; Liu, T., A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Lett. 12, 118, 2020.
[123] Azam, M. A.; Mupit, M., Chapter 2 - Carbon Nanomaterial-Based Sensor: Synthesis and Characterization. In Carbon Nanomaterials-Based Sensors, Manjunatha, J. G.; Hussain, C. M., Eds. Elsevier: pp 15-28 2022.
[124] Pajkossy, T., Analysis of Quasi-Reversible Cyclic Voltammograms: Transformation to Scan-Rate Independent Form. Electrochem. Commun. 90, 69-72, 2018.
[125] Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 95, 197-206, 2018.
[126] Bontempelli, G.; Dossi, N.; Toniolo, R., Voltammetry | Polarography. In Encyclopedia of Analytical Science (Third Edition), Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford; pp 218-229 2019.
[127] Macdonald, D. D., Reflections on the History of Electrochemical Impedance Spectroscopy. Electrochim. Acta 51, 1376-1388, 2006.
[128] Dhandapani, H. N.; Ramasubramanian, M.; Laxminarayanan, P.; Singha Roy, S.; De, A.; Babu, B. R.; Kundu, S., W-Promoted OER Kinetics of Bimetallic Hydroxide: An Experimental Analysis via Operando EIS and Temperature-Dependent Study. J. Mater. Chem. A 13, 3506-3517, 2025.
[129] García-Osorio, D. A.; Jaimes, R.; Vazquez-Arenas, J.; Lara, R. H.; Alvarez-Ramirez, J., The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions: •OH Formation. J. Electrochem. Soc. 164, E3321, 2017.
[130] Magar, H. S.; Hassan, R. Y. A.; Mulchandani, A., Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 21, 6578, 2021.
[131] Meddings, N.; Heinrich, M.; Overney, F.; Lee, J.-S.; Ruiz, V.; Napolitano, E.; Seitz, S.; Hinds, G.; Raccichini, R.; Gaberšček, M.; Park, J., Application of Electrochemical Impedance Spectroscopy to Commercial Li-Ion Cells: A Review. J. Power Sources 480, 228742, 2020.
[132] Randviir, E. P.; Banks, C. E., Electrochemical Impedance Spectroscopy: an Overview of Bioanalytical Applications. Anal. Methods 5, 1098-1115, 2013.
[133] Ikani, N.; Pu, J. H.; Cooke, K., Analytical Modelling and Electrochemical Impedance Spectroscopy (EIS) to Evaluate Influence of Corrosion Product on Solution Resistance. Powder Technol. 433, 119252, 2024.
[134] Lazanas, A. C.; Prodromidis, M. I., Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas. Sci. Au 3, 162-193, 2023.
[135] Vadhva, P.; Hu, J.; Johnson, M. J.; Stocker, R.; Braglia, M.; Brett, D. J. L.; Rettie, A. J. E., Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 8, 1930-1947, 2021.
[136] Choi, W.; Shin, H.-C.; Kim, J. M.; Choi, J.; Yoon, W.-S., Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries. J. Electrochem. Sci. Technol. 11, 1-13, 2020.
[137] Jash, P.; Parashar, R. K.; Fontanesi, C.; Mondal, P. C., The Importance of Electrical Impedance Spectroscopy and Equivalent Circuit Analysis on Nanoscale Molecular Electronic Devices. Adv. Funct. Mater. 32, 2109956, 2022.
[138] Cossar, E.; Houache, M. S. E.; Zhang, Z.; Baranova, E. A., Comparison of Electrochemical Active Surface Area Methods for Various Nickel Nanostructures. J. Electroanal. Chem. 870, 114246, 2020.
[139] Binninger, T.; Fabbri, E.; Kötz, R.; Schmidt, T. J., Determination of the Electrochemically Active Surface Area of Metal-Oxide Supported Platinum Catalyst. J. Electrochem. Soc. 161, H121, 2014.
[140] McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 135, 16977-16987, 2013.
[141] Dupont, M.; Hollenkamp, A. F.; Donne, S. W., Electrochemically Active Surface Area Effects on the Performance of Manganese Dioxide for Electrochemical Capacitor Applications. Electrochim. Acta 104, 140-147, 2013.
[142] Trudgeon, D. P.; Li, X., Enhanced Surface Area Carbon Cathodes for the Hydrogen-Bromine Redox Flow Battery. Batteries 8, 276, 2022.
[143] Guy, O. J.; Walker, K.-A. D., Chapter 4 - Graphene Functionalization for Biosensor Applications. In Silicon Carbide Biotechnology (Second Edition), Saddow, S. E., Ed. Elsevier: pp 85-141 2016.
[144] Soosaimanickam, C.; Sakthivel, A.; Murugavel, K.; Alwarappan, S., Zeolite Imidazolate Framework-Based Platform for the Electrochemical Detection of Epinephrine. J. Electrochem. Soc. 170, 107504, 2023.
[145] Han, S.; Liu, K.; Hu, L.; Teng, F.; Yu, P.; Zhu, Y., Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure. Sci. Rep. 7, 43599, 2017.
[146] Quilty, C. D.; Housel, L. M.; Bock, D. C.; Dunkin, M. R.; Wang, L.; Lutz, D. M.; Abraham, A.; Bruck, A. M.; Takeuchi, E. S.; Takeuchi, K. J.; Marschilok, A. C., Ex-situ and Operando XRD and XAS Analysis of MoS2: A Lithiation Study of Bulk and Nanosheet Materials. ACS Appl. Energy Mater. 2, 7635-7646, 2019.
[147] Chen, J.; Xia, Y.; Yang, J.; Chen, B., Fabrication of Monolayer MoS2/rGO Hybrids with Excellent Tribological Performances Through a Surfactant-Assisted Hydrothermal Route. Appl. Phys. A 124, 2018.
[148] Blanco, É.; Afanasiev, P.; Berhault, G.; Uzio, D.; Loridant, S., Resonance Raman Spectroscopy as a Probe of the Crystallite Size of MoS2 Nanoparticles. C. R. Chim. 19, 1310-1314, 2016.
[149] Susmitha, B.; Arjun, K.; Karthikeyan, B., Raman Spectral Studies on Phonon Softening, Surface Temperature, Fano Resonance, and Phase Change in MoS2 Nanoflakes. Appl. Phys. A 129, 309, 2023.
[150] An, R.; Li, G.; Liu, Z., Nickel-Cobalt Bimetal Hierarchical Hollow Nanosheets for Efficient Oxygen Evolution in Seawater. Matter. 17, 2298, 2024.
[151] Pang, G.; Ji, M.; Li, Z.; Yang, Z.; Qiu, X.; Zhao, Y., Electrospinning of ZIF-67 Derived Co-C-N Composite Efficiently Activating Peroxymonosulfate to Degrade Dimethyl Phthalate. Water 14, 2248, 2022.
[152] Lu, Y.; Pan, H.; Lai, J.; Xia, Y.; Chen, L.; Liang, R.; Yan, G.; Huang, R., Bimetallic CoCu-ZIF Material for Efficient Visible Light Photocatalytic Fuel Denitrification. RSC Adv. 12, 12702-12709, 2022.
[153] Naghshbandi, Z.; Gholinejad, M.; Sansano, J. M.; Eskandari, M., Graphene Quantum Dots Incorporated ZIF-67 for Stabilization of Au Nanoparticles: Efficient Catalyst for A3-Coupling and Nitroarenes Reduction Reactions. Appl. Organomet. Chem. 38, e7400, 2024.
[154] Nawz, T. H.; Masood, M. T.; Safdar, A.; Shahid, M.; Noor, T.; Hussain, M.; Razi, A.; Umer, M. A., In Situ Synthesis of Crystalline MoS2@ZIF-67 Nanocomposite for the Efficient Removal of Methyl Orange Dye from Aqueous Media. Micromachines 14, 1534, 2023.
[155] Ehsan, M.; Hakeem, A.; Rehman, A., Hierarchical Growth of CoO Nanoflower Thin Films Influencing the Electrocatalytic Oxygen Evolution Reaction. Electrocatalysis 11, 2020.
[156] Li, X.-H.; He, P.; Wang, T.; Zhang, X.-W.; Chen, W.-L.; Li, Y.-G., Keggin-Type Polyoxometalate-Based ZIF-67 for Enhanced Photocatalytic Nitrogen Fixation. ChemSusChem 13, 2769-2778, 2020.
[157] Sadiq, S.; Khan, I.; Humayun, M.; Wu, P.; Khan, A.; Khan, S.; Khan, A.; Khan, S.; Alanazi, A. F.; Bououdina, M., Synthesis of Metal-Organic Framework-Based ZIF-8@ZIF-67 Nanocomposites for Antibiotic Decomposition and Antibacterial Activities. ACS Omega 8, 49244-49258, 2023.
[158] Han, Q.; Wang, X.; Liu, X.; Zhang, Y.; Cai, S.; Qi, C.; Wang, C.; Yang, R., MoO3−x Nanodots with Dual Enzyme Mimic Activities as Multifunctional Modulators for Amyloid Assembly and Neurotoxicity. J. Colloid Interface Sci. 539, 575-584, 2019.
[159] Larsson, A.; Simonov, K.; Eidhagen, J.; Grespi, A.; Yue, X.; Tang, H.; Delblanc, A.; Scardamaglia, M.; Shavorskiy, A.; Pan, J.; Lundgren, E., In Situ Quantitative Analysis of Electrochemical Oxide Film Development on Metal Surfaces Using Ambient Pressure X-ray Photoelectron Spectroscopy: Industrial Alloys. Appl. Surf. Sci. 611, 155714, 2023.
[160] Chhetri, K.; Muthurasu, A.; Dahal, B.; Kim, T.; Mukhiya, T.; Chae, S. H.; Ko, T. H.; Choi, Y. C.; Kim, H. Y., Engineering the Abundant Heterointerfaces of Integrated Bimetallic Sulfide-Coupled 2D MOF-Derived Mesoporous CoS2 Nanoarray Hybrids for Electrocatalytic Water Splitting. Mater. Today Nano 17, 100146, 2022.
[161] Ge, Y.; Chu, H.; Chen, J.; Zhuang, P.; Feng, Q.; Smith, W. R.; Dong, P.; Ye, M.; Shen, J., Ultrathin MoS2 Nanosheets Decorated Hollow CoP Heterostructures for Enhanced Hydrogen Evolution Reaction. ACS Sustainable Chem. Eng. 7, 10105-10111, 2019.
[162] Duan, Y.; Guo, Z.; Wang, T.; Zhang, J., Uniform Anchoring of MoS2 Nanosheets on MOFs-Derived CoFe2O4 Porous Nanolayers to Construct Heterogeneous Structural Configurations for Efficient and Stable Overall Water Splitting. J. Colloid Interface Sci. 680, 541-551, 2025.
[163] Wang, T.; Xie, W.; Pang, Y.; Qiu, W.; Feng, Y.; Li, X.; Wei, J.; Tang, X.; Lin, L., Solvent-Free Hydrogenation of 5-Hydroxymethylfurfural and Furfural to Furanyl Alcohols and Their Self-Condensation Polymers. ChemSusChem 15, e202200186, 2022.
[164] Yang, W.; Bu, C.; Zhao, M.; Li, Y.; Cui, S.; Yang, J.; Lian, H., Full-Spectrum Utilization of ZIF-67/Ag NPs/NaYF4:Yb,Er Photocatalysts for Efficient Degradation of Sulfadiazine: Upconversion Mechanism and DFT Calculation. Small 20, 2309972, 2024.
[165] Xiong, J.; Chen, X.; Zhang, Y.; Lu, Y.; Liu, X.; Zheng, Y.; Zhang, Y.; Lin, J., Fe/Co/N-C/Graphene Derived from Fe/ZIF-67/Graphene Oxide Three Dimensional Frameworks as a Remarkably Efficient and Stable Catalyst for the Oxygen Reduction Reaction. RSC Adv. 12, 2425-2435, 2022.
[166] He, W.; Ifraemov, R.; Raslin, A.; Hod, I., Room-Temperature Electrochemical Conversion of Metal-Organic Frameworks into Porous Amorphous Metal Sulfides with Tailored Composition and Hydrogen Evolution Activity. Adv. Funct. Mater. 28, 1707244, 2018.
[167] Tayebi, M.; Masoumi, Z.; Lee, H.; Hong, D.; Seo, B.; Lim, C.-S.; Kyung, D.; Kim, H.-G., MOF-Derived FeCoO/N-Doped C Bifunctional Electrode for H2 Production Through Water and Glucose Electrolysis. Adv. Sustain. Syst. 8, 2400342, 2024.
[168] Qu, C.; Cao, J.; Chen, Y.; Wei, M.; Fan, H.; Liu, X.; Li, X.; Wu, Q.; Feng, B.; Yang, L., In-Situ Growth of Hierarchical Trifunctional Co4S3/Ni3S2@MoS2 Core-Shell Nanosheet Array on Nickel Foam for Overall Water Splitting and Supercapacitor. Int. J. Hydrog. Energy 48, 648-661, 2023.
[169] Liu, S.; Zhang, Y.; Hao, L.; Nsabimana, A.; Shen, S., The Dual Gain Strategy of Introducing Nickel Doping and Anchoring Amorphous Iron Oxyhydroxide Nanosheets on ZIF-67 Achieves an Efficient Oxygen Evolution Reaction. Sep. Purif. Technol. 354, 129501, 2025.
[170] Zhou, G.; Zhou, X.; Li, J.; Huang, W.; Pang, H.; Zhang, S.; Yang, J.; Xu, L.; Tang, Y., Deliberate Amorphization of Co-MOF for Constructing Crystalline-Amorphous Heterostructures Toward High-Performance Water Electrolysis. Small 20, 2404598, 2024.
[171] Aashi; Chaudhuri, A.; Krishankant; Pundir, V.; Ahmed, Z.; Bera, C.; Bakli, C.; Bagchi, V., Unveiling the Potential of Metal-Organic Frameworks: Nucleation-Induced Strain Activating Electrocatalytic Water Splitting. ACS Sustainable Chem. Eng. 12, 14276-14287, 2024.
[172] Zhang, J.; Bu, Y.; Li, Z.; Yang, T.; Zhao, N.; Wu, G.; Zhao, F.; Zhang, R.; Zhang, D., Nanoarchitectonics of Fe-Doped Ni3S2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity. Nanomaterials 14, 1445, 2024.
[173] Gao, H.; Han, F.; Yi, S.; Chen, L.; Chen, D., OER Catalyst Fabricated with ZIF-67 Derived Carbon and Selectively Exsolvated Perovskite Oxide. J. Alloys Compd. 963, 170908, 2023.
[174] Cao, M.; Li, Y.; Cao, Y.; Wen, Y.; Li, B.; Shen, Q.; Gu, W., Rational Construction of a 3D Self-Supported Electrode Based on ZIF-67 and Amorphous NiCoP for an Enhanced Oxygen Evolution Reaction. Inorg. Chem. 63, 14062-14073, 2024.
[175] Song, J.; Zhu, P.; Ma, W.; Li, Y., PW6Mo6/ZIF-67@NF Composite with Exposed Co Nodes as Efficient Oxygen Evolution Reaction Electrocatalyst. Int. J. Hydrogen Energy. 51, 327-337, 2024.
[176] Jung, H. B.; Kim, Y.; Lim, J.; Cho, S.; Seo, M.; Kim, I.-S.; Kim, M.; Lee, C.; Lee, Y.-W.; Yoo, C.-Y.; Oh, Y.; Hong, J.; Cho, H.-S.; Cho, Y., ZIF-67 Metal-Organic Frameworks Synthesized onto CNT Supports for Oxygen Evolution Reaction in Alkaline Water Electrolysis. Electrochim. Acta 439, 141593, 2023.
[177] Selvasundarasekar, S. S.; Mahendran, S.; Raj Mohamed, R.; BaQais, A.; Amin, M. A.; Kundu, S., Boosting the Activity of the Oxygen Evolution Reaction Through an Electrospun Nickel Manganese-Based Bimetallic Zeolite Imidazolate Framework Fibrous System in Alkaline Medium. Inorg. Chem. 62, 6411-6420, 2023.
[178] Liu, Y.; Hu, B.; Wu, S.; Wang, M.; Zhang, Z.; Cui, B.; He, L.; Du, M., Hierarchical Nanocomposite Electrocatalyst of Bimetallic Zeolitic Imidazolate Framework and MoS2 Sheets for Non-Pt Methanol Oxidation and Water Splitting. Appl. Catal. B: Environ. 258, 117970, 2019.
[179] Khan, S.; Noor, T.; Iqbal, N.; Pervaiz, E.; Yaqoob, L., A Zeolitic Imidazolate Framework (ZIF-67) and Graphitic Carbon Nitride (g-C3N4) Composite Based Efficient Electrocatalyst for Overall Water-Splitting Reaction. RSC Adv. 13, 24973-24987, 2023.
[180] Tang, H.; Sun, Z.; Fan, S.; Feng, S.; Li, L.; Fang, L.; Wang, C., Fe-Doped CoNi Layered Hydrogencarbonate Hierarchical Nano-Array Assisted Growth of ZIF-67 as an Efficient OER/UOR Bifunctional Catalyst Reaction for Overall Urea-Water Electrolysis. Chem. Eng. J. 491, 152023, 2024.
[181] Jung, S.; Senthil, R. A.; Moon, C. J.; Tarasenka, N.; Min, A.; Lee, S. J.; Tarasenko, N.; Choi, M. Y., Mechanistic Insights into ZIF-67-Derived Ir-doped Co3O4@N-doped Carbon Hybrids as Efficient Electrocatalysts for Overall Water Splitting using In Situ Raman Spectroscopy. Chem. Eng. J. 468, 143717, 2023.
[182] Guo, H.; Che, A.; Mi, W.; Zhang, Y.; Shi, X., Reconstruction of the ZIF-67 Structure and Boosted Hydrogen Evolution Reaction in an Alkaline Medium. J. Mater. Chem. A 11, 19145-19152, 2023.
[183] Zhao, L.; Gong, C.; Chen, X.; He, X.; Chen, H.; Du, X.; Wang, D.; Fang, W.; Zhang, H.; Li, W., ZIF-67 Derived Mo-CoS2 Nanoparticles Embedded in Hierarchically Porous Carbon Hollow Sphere for Efficient Overall Water Splitting. Appl. Surf. Sci. 623, 157030, 2023.
[184] Lontio Fomekong, R.; Akir, S.; Oliveira, F. M.; Luxa, J.; Chacko, L.; Regner, J.; Dekanovsky, L.; Vejmelkova, E.; Sofer, Z., When ZIF-67 Meets V2C MXene to form an Advanced Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Media. J. Power Sources 602, 234293, 2024.
[185] Young, C.; Zhuang, J.-W., Synergistic Two-Dimensional Metal Sulfide Heterostructures from ZIF-67: A Promising Catalyst for Efficient Overall Water Splitting. Int. J. Hydrogen Energy. 49, 805-815, 2024.
[186] Liu, X.; Liu, Y.; Li, Y.; Zhuang, J.; Tang, J., 2D ZIF-67 Derived V-Doped CoP/NC Nanosheets as Efficient Electrocatalysts for Water Splitting. Electrochim. Acta 471, 143347, 2023.
[187] Wang, X.; Sun, C.; Zhang, Y.; Xin, W.; Jiang, X.; Lu, Z.; Yu, L.; Zhu, M.; Yang, L., Discrepancy of Alkaline/Neutral Hydrogen Evolution Activity from NiCoSe2/NC and Co-NiSe/NC Derived from In-Situ Thermal and Solution Processing Selenizations of ZIF-67. Int. J. Hydrogen Energy. 49, 1236-1244, 2024.
[188] Nan, Z.; Ma, Y.; Li, Z.; Shi, M.; Sun, Y.; Song, R.; Liu, W.; Ma, W., An Efficient Heterostructure MoP2-CoMoP-NC Electrocatalyst Derived from ZIF-67 for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy. 54, 1575-1581, 2024.
[189] Velayutham, R.; Raj, C. J.; Jang, H. M.; Cho, W. J.; Palanisamy, K.; Kaya, C.; Kim, B. C., Surface-Oriented Heterostructure of Iron Metal Organic Framework Confined Molybdenum Disulfides as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Mater. Today Nano 24, 100387, 2023.
[190] Zhang, H.; Chen, A.; Bi, Z.; Wang, X.; Liu, X.; Kong, Q.; Zhang, W.; Mai, L.; Hu, G., MOF-on-MOF-Derived Ultrafine Fe2P-Co2P Heterostructures for High-Efficiency and Durable Anion Exchange Membrane Water Electrolyzers. ACS Nano 17, 24070-24079, 2023.
[191] Zhu, D.; Liu, J.; Zhao, Y.; Zheng, Y.; Qiao, S.-Z., Engineering 2D Meta-Organic Framework/MoS2 Interface for Enhanced Alkaline Hydrogen Evolution. Small 15, 1805511, 2019.
[192] Zhang, H.; Dai, W.; Liu, R.; Xiang, J.; Song, Y.; Hou, Y.; Wei, H.; Liu, P.; Xu, B.; Liang, J.; Guo, J., ZIF-67-Derived Porous Carbon Nanosheets Decorated with Co Nanoflakes As Bifunctional Electrocatalysts for Overall Water Splitting. ACS Appl. Nano Mater. 7, 12773-12782, 2024.
[193] Yu, K.; Zhang, J.; Hu, Y.; Wang, L.; Zhang, X.; Zhao, B., Ni Doped Co-MOF-74 Synergized with 2D Ti3C2Tx MXene as an Efficient Electrocatalyst for Overall Water-Splitting. Catalysts 14, 184, 2024.
[194] Su, C.; Wang, D.; Wang, W.; Mitsuzaki, N.; Chen, Z., Facile Synthesis of CeO2-Decorated W@Co-MOF Heterostructures as a Highly Active and Durable Electrocatalyst for Overall Water Splitting. Phys. Chem. Chem. Phys. 26, 18953-18961, 2024.
[195] Yang, X.; Zhang, H.; Yu, B.; Liu, Y.; Xu, W.; Wu, Z., An Unveiled Electrocatalysis Essence of NiCo Hydroxides Through In Situ Raman Spectroscopy for Urea Oxidation. Energy Technol. 10, 2101010, 2022.
[196] Koza, J. A.; Hull, C. M.; Liu, Y.-C.; Switzer, J. A., Deposition of β-Co(OH)2 Films by Electrochemical Reduction of Tris(ethylenediamine)cobalt(III) in Alkaline Solution. Chem. Mater. 25, 1922-1926, 2013.
[197] Liu, L.; Ou, Y.; Gao, D.; Yang, L.; Dong, H.; Xiao, P.; Zhang, Y., Surface Engineering by a Novel Electrochemical Activation Method for the Synthesis of Co3+ Enriched Co(OH)2/CoOOH Heterostructure for Water Oxidation. J. Power Sources 396, 395-403, 2018.
[198] Zheng, W.; Liu, M.; Lee, L. Y. S., Electrochemical Instability of Metal-Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites. ACS Catal. 10, 81-92, 2020.
[199] Qiao, X.; Kang, H.; Li, Y.; Cui, K.; Jia, X.; Liu, H.; Qin, W.; Pupucevski, M.; Wu, G., Porous Fe-Doped β-Ni(OH)2 Nanopyramid Array Electrodes for Water Splitting. ACS Appl. Mater. Interfaces 12, 36208-36219, 2020.
[200] Xiong, D.; He, X.; Liu, X.; Zhang, K.; Tu, Z.; Wang, J.; Sun, S.-G.; Chen, Z., Manipulating Dual-Metal Catalytic Activities Toward Organic Upgrading in Upcycling Plastic Wastes with Inhibited Oxygen Evolution. ACS Nano 18, 20340-20352, 2024.
[201] Li, Z.; Peng, C.; Yin, H.; Ruan, Y.; Sun, Y.; Chen, H.; Yang, S.; Cheng, G., Effects of Structural Changes on the Enhanced Hydrogen Evolution Reaction for Pd NPs@2H-MoS2 Studied by In-Situ Raman Spectroscopy. Chem. Phys. Lett. 764, 138267, 2021.
[202] Singh, B.; Verma, S., Metal-Organic Framework (MOF) Based Materials: Promising Candidates for Electrocatalytic Seawater Splitting. Mater. Chem. Front. 8, 3136-3149, 2024.
[203] Zhou, L.; Huang, Z.-H.; Kang, F.; Lv, R., Bimetallic Substrate Induction Synthesis of Binder-Free Electrocatalysts for Stable Seawater Oxidation at Industrial Current Densities. Chem. Eng. J. 458, 141457, 2023.
[204] Jothi, M.; Gnanasekar, P.; Ooi, B. S.; Kulandaivel, J., Non-Noble Metal-Organic Framework (CuV-MOF) on Graphene-Coated Nickel Foam Enables High-Performance Overall Natural Seawater Splitting. J. Phys. Chem. C 128, 12799-12807, 2024.
[205] Kafle, A.; Gupta, D.; Nagaiah, T. C., Facile Fabrication of NiFeB Deposited Flexible Carbon Cloth Electrode Towards Overall Water Splitting in Alkaline and Saline Solutions. Electrochim. Acta 441, 141779, 2023.
[206] Jadhav, A. R.; Kumar, A.; Lee, J.; Yang, T.; Na, S.; Lee, J.; Luo, Y.; Liu, X.; Hwang, Y.; Liu, Y.; Lee, H., Stable Complete Seawater Electrolysis by Using Interfacial Chloride Ion Blocking Layer on Catalyst Surface. J. Mater. Chem. A 8, 24501-24514, 2020.
[207] Yuan, W.; Cui, Z.; Zhu, S.; Li, Z.; Wu, S.; Liang, Y., Structure Engineering of Electrodeposited NiMo Films for Highly Efficient and Durable Seawater Splitting. Electrochim. Acta 365, 137366, 2021.
[208] Rodney, J. D.; Deepapriya, S.; Robinson, M. C.; Das, S. J.; Perumal, S.; Sivakumar, P.; Jung, H.; Kim, B. C.; Raj, C. J., Cu1-xRExO (RE = La, Dy) Decorated Dendritic CuS Nanoarrays for Highly Efficient Splitting of Seawater into Hydrogen and Oxygen Fuels. Appl. Mater. Today 24, 101079, 2021.
[209] Luo, Y.; Yang, X.; He, L.; Zheng, Y.; Pang, J.; Wang, L.; Jiang, R.; Hou, J.; Guo, X.; Chen, L., Structural and Electronic Modulation of Iron-Based Bimetallic Meta-Organic Framework Bifunctional Electrocatalysts for Efficient Overall Water Splitting in Alkaline and Seawater Environment. ACS Appl. Mater. Interfaces 14, 46374-46385, 2022.
校內:立即公開