| 研究生: |
熊森 Smith, Zachary Ryan Hill |
|---|---|
| 論文名稱: |
濺射鈰摻雜氧化銦作為半透明雙面鈣鈦礦太陽能電池的透明導電氧化物 Sputtered Cerium-Doped-Indium Oxide as Transparent Conducting Oxide for Semi-Transparent Bifacial Perovskite Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu 張克勤 Chang, Keh-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 濺射 、鈰摻雜氧化銦 、鈣鈦礦 、透明導電氧化物 、雙面太陽能電池 |
| 外文關鍵詞: | Cerium-doped-Indium Oxide, Magnetron Sputtering, Perovskite, Transparent Conducting Oxide, Bifacial Solar Cell, 4-Terminal Tandem |
| 相關次數: | 點閱:67 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於氣候危機,發展可持續的再生能源引起了多年來的關注。太陽能是一種 有前途的再生能源,利用太陽的能量轉換成電力。鈣鈦礦太陽能電池已被證明與傳統矽電池相比具有競爭力的效率。本研究的重點是表徵透過直流 (DC) 和射頻 (RF) 磁控濺鍍應用的作為透明導電氧化物 (TCO) 層的摻鈰氧化銦 (ICO) 的透明度和薄層電阻。 ICO 直接沉積在Spiro-OMeTAD 電洞傳輸層(HTL) 上並與鉬(MoOx)緩衝層一起沉積,以創建高效的雙面鈣鈦礦頂部電池,用於與鈍化發射極後接觸(PERC)的4 端子串聯晶體矽底電池。我們的數據顯示 20 nm MoOx 足以防止室溫下Vbias 為 348 V 的 80 W 射頻濺鍍 1 小時20分鐘造成的濺鍍損壞。 這產生210 nm的薄膜,遷移率為8.3 cm2/Vs,載子濃度為6.07 x 1020 cm-3,電阻率為1.24 x 10-3 Ωcm,平均透明度在550 nm - 1000 nm 範圍內,為 89.70 %,在保持目標完整性的同時,FOM 為 6.67 x 10-3Ω-1。表徵後,對完成的雙面電池進行測量,FTO 側和 ICO側的功率轉換效率(PCE)分別為 15.28 % 和 10.00 %。最後,對完整的鈣鈦礦-矽 4 端串聯配置進行了測試,結果 PCE 為 21.89 %。
Perovskite solar cells have been proven to have a competitive efficiency when compared with traditional silicon cells. This research focuses on characterizing the transparency and sheet resistance of cerium-doped indium oxide (ICO) as a transparent conducting oxide (TCO) layer applied by way of Direct Current (DC) and Radio Frequency (RF) magnetron sputtering. ICO was deposited both directly on Spiro-OMeTAD hole transport layer (HTL) and with a buffer layer of Molybdenum (MoOx) to create an efficient bifacial perovskite top cell to be used in 4-Terminal tandem with a Passivated Emitter Rear Contact (PERC) crystalline silicon bottom cell. Our data suggests 20nm MoOx is sufficient to protect against sputtering damage caused by RF sputtering of 80W for 1hr. 20min. with a Vbias of 348V at room temperature which produces a thin film of 210nm with a mobility of 8.3 cm2/Vs, a carrier concentration of 6.07x1020 cm-3, a resistivity of 1.24x10-3 Ω-cm, an average transparency of 89.70% between 550nm-1000nm, resulting in a FOM of 6.67 x10-3 Ωcm while maintaining target integrity. After characterization, a completed bifacial cell was measured, obtaining a power conversion efficiency (PCE) of 15.28% and 10.00% from the FTO side and ICO side, respectively. Finally, a completed perovskite-silicon 4-Terminal tandem configuration was tested resulting in a PCE of 21.89%.
1. Akhmedov, Akhmed K., et al. “Transparent Conductive Indium Zinc Oxide Films: Temperature and Oxygen Dependences of the Electrical and Optical Properties.” Coatings 2022, 12, 1583. https://doi.org/10.3390/coatings12101583.
2. An, Shichong., et al. “Cerium-Doped Indium Oxide Transparent Electrode for Semi-Transparent Perovskite and Perovskite/Silicon Tandem Solar Cells.” Solar Energy, 2020, vol. 196, pp. 409–418, https://doi.org/10.1016/j.solener.2019.12.040.
3. “At 26.81%, LONGi Sets a New World Record Efficiency for Silicon Solar Cells.” Longi, 2022, www.longi.com/en/news/propelling-the-transformation/ (accessed 2023).
4. Sekar, Sugunraj, et al. “A Critical Review of The Process and Challenges of Silicon Crystal Growth for Photovoltaic Applications.” Cryst. Res. Technol. 2024, 59, 2300131. https://doi.org/10.1002/crat.202300131.
5. Deng, Shuo, et al. “Mitigating parasitic absorption in Poly-Si contacts for TOPCon solar cells: A comprehensive review.” Solar Energy Materials and Solar Cells, 2024, vol. 267, 112704, https://doi.org/10.1016/j.solmat.2024.112704.
6. Shi, Donglu, et al. "Nanoenergy Materials." Micro and Nano Technologies, Nanomaterials and Devices,” William Andrew Publishing, 2015, pp. 255-291. ISBN 9781455777549.
7. Kim, Sangho, et al. “Over 30% Efficiency Bifacial 4-Terminal Perovskite-Heterojunction Silicon Tandem Solar Cells with Spectral Albedo.” Scientific Reports, 2021, vol. 11, no. 1, https://doi.org/10.1038/s41598-021-94848-4.
8. Yamaguchi, Masafumi. “High-Efficiency GaAs-Based Solar Cells.” Post-Transition Metals, IntechOpen, 14 Apr. 2021. Crossref, https://doi.org/10.5772/intechopen.94365.
9. Sil, Manik Chandra, et al. "Enhancement of Power Conversion Efficiency of Dye-Sensitized Solar Cells for Indoor Applications by Using a Highly Responsive Organic Dye and Tailoring the Thickness of Photoactive Layer." Journal of Power Sources, 2020, vol. 479, p. 229095. https://doi.org/10.1016/j.jpowsour.2020.229095.
10. Ballif, Christophe, et al. “Status and Perspectives of Crystalline Silicon Photovoltaics in Research and Industry.” Nature Reviews Materials, 2022, vol. 7, no. 8, pp. 597–616, https://doi.org/10.1038/s41578-022-00423-2.
11. Bellini, Emiliano. “Kaust Claims 33.7% Efficiency for Perovskite/Silicon Tandem Solar Cell.” Pv Magazine International, 2023, www.pv-magazine.com/2023/05/30/kaust-claims-33-7-efficiency-for-perovskite-silicon-tandem-solar-cell/.
12. Bett, Alexander J., et al. “Semi-transparent perovskite solar cells with ITO directly sputtered on Spiro-OMeTAD for Tandem Applications.” ACS Applied Materials & Interfaces, 2019, vol. 11, no. 49, pp. 45796–45804, https://doi.org/10.1021/acsami.9b17241.
13. Boyd, Matthew T., et al. "Evaluation and Validation of Equivalent Circuit Photovoltaic Solar Cell Performance Models." ASME. J. Sol. Energy Eng. 2011; 133(2): 021005. https://doi.org/10.1115/1.4003584.
14. Cheng, Yuanhang, Ding, Liming. “Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications.” SusMat. 2021; 1: 324344. https://doi.org/10.1002/sus2.25.
15. Ellmer, Klaus. “Past Achievements and Future Challenges in the Development of Optically Transparent Electrodes.” Nature Photonics, 2012, vol. 6, no. 12, pp. 809–817, https://doi.org/10.1038/nphoton.2012.282.
16. Erkan Aydin, et al. “Transparent electrodes for optoelectronic devices: Induced damage and mitigation strategies.” Matter, 2021 Volume 4, Issue 11, Pages 3549-3584, https://doi.org/10.1016/j.matt.2021.09.021.
17. Green, Julissa. “An Overview of Magnetron Sputtering | Stanford Advanced Materials.” Global Supplier of Sputtering Targets and Evaporation Materials | Stanford Advanced Materials, 2019.
18. Gorobtsov, Philipp Yu., et al. "Microstructure and Local Electrophysical Properties of Sol-Gel Derived (In2O3-10%SnO2)/V2O5 Films." Colloid and Interface Science Communications, 2021, vol. 43, article 100452. https://doi.org/10.1016/j.colcom.2021.100452.
19. Kanda, Hiroyuki, et al. “Analysis of Sputtering Damage on I–V curves for Perovskite Solar Cells and Simulation with Reversed Diode Model.” J. Phys. Chem. C, 2016 vol. 120, pp. 28441-28447, https://doi.org/10.1021/acs.jpcc.6b09219.
20. Helmholtz-Zentrum Berlin Für Materialien Und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany, 2012.
21. Education, UCAR Center for Science. “Center for Science Education.” Electromagnetic (EM) Spectrum | Center for Science Education, scied.ucar.edu/learning-zone/earth-system/electromagnetic-spectrum. www.iea.org/energy-system/renewables/solar-pv. (Accessed 25 Apr. 2024).
22. Leguy, Aurélien M.A. "Experimental and Theoretical Optical Properties of Methylammonium Lead Halide Perovskites." Nanoscale, 2016, vol. 8, pp. 6317-6327, https://doi.org/10.1039/C5NR05435D.
23. Dey, Krishanu, et al. "Optoelectrical Properties of Magnetron Sputter-Deposited Cerium-Doped Indium Oxide Thin Films for Solar Cell Applications." Ceramics International, 2021, vol. 47, no. 2, pp. 1798-1806, https://doi.org/10.1016/j.ceramint.2020.09.006.
24. Lee, Pei-Huan, et al. “Featuring Semitransparent P–I–N Perovskite Solar Cells for High‐Efficiency Four‐Terminal/Silicon Tandem Solar Cells.” Solar RRL, 2022, vol. 6, no. 4, p. 2100891, https://doi.org/10.1002/solr.202100891.
25. Kim, Deok-Kyu, Kim, Hong-Bae, “Dependence of the Properties of Sputter Deposited Al-doped ZnO Thin Films on Base Pressure,” Journal of Alloys and Compounds, 2012, vol. 522, Pages 69-73, https://doi.org/10.1016/j.jallcom.2012.01.078.
26. Correa-Baena, Juan-Pablo, et al. "Promises and Challenges of Perovskite Solar Cells." Science 2017, vol. 358.6364, Pages 739-744. https://doi.org/10.1126/science.aam6323.
27. Loper, Philipp, et al. “Organic-Inorganic Halide Perovskite/Crystalline Silicon Four-Terminal Tandem Solar Cells.” Phys. Chem. Chem. Phys. 2015, 17, 1619-1629, https://doi.org/10.1039/C4CP03788J.
28. Luo, Xin., et al. “Efficient Perovskite/Silicon Tandem Solar Cells on Industrially Compatible Textured Silicon.” Adv. Mater. 2023, 35, 2207883. https://doi.org/10.1002/adma.202207883.
29. Morales-Masis, Monica., et al. “Transparent Electrodes for Efficient Optoelectronics.” Adv. Electron. Mater. 2017, 3, 1600529. https://doi.org/10.1002/aelm.201600529.
30. Oku, Takeo. "Crystal Structures of Perovskite Halide Compounds used for Solar Cells" Reviews on Advanced Materials Science, vol. 59, no. 1, 2020, pp. 264-305. https://doi.org/10.1515/rams-2020-0015.
31. Kim, Pan-Young, Lee, Jai-Yeoul, Lee, Hee-Young, “Structure and Properties of IZO Transparent Conducting Thin Films Deposited by PLD Method.” J. Korean Phys. Soc. 2008, vol. 53(1), pages 207-211. https://doi.org/10.3938/jkps.53.207.
32. Riedel-Lyngskær, Nicholas, et al., “The Effect of Spectral Albedo in Bifacial Photovoltaic Performance,” Solar Energy, 2022, vol. 231, pages 921-935, https://doi.org/10.1016/j.solener.2021.12.023.
33. Song, Zhaoning, et al., “Perovskite Solar Cells GoBifacial— MutualBenefits for Efficiency and Durability.” Adv. Mater. 2022, 34, 2106805. https://doi.org/10.1002/adma.202106805.
34. Song, Zhaoning, et al., “Assessing the True Power of Bifacial Perovskite Solar Cells under Concurrent Bifacial Illumination.” Sustainable Energy & Fuels, 2021, vol. 11, https://doi.org/10.1039/d1se00314c.
35. Dhall, Shivani, Nathawat, Rashi, Sood, Kapil, “Carbon Nanomaterials and their Nanocomposite-Based Chemiresistive Gas Sensors.” Elsevier, 2023. ISBN: 978-0-12-822837-1
36. “The Role of Un-Balanced Magnetron Sputtering.” VacCoat, 2024, vaccoat.com/blog/what-is-rf-sputtering/.
37. Liu,Chong, et al., “Ultra-Thin MoOx as Cathode Buffer Layer for the Improvement of All-Inorganic CsPbIBr2 Perovskite Solar Cells.” Nano Energy, 2017, vol. 41, Pages 75-83, https://doi.org/10.1016/j.nanoen.2017.08.048.
38. Babu, S. Harinath et al. “Indium oxide: A Transparent, Conducting Ferromagnetic Semiconductor for Spintronic Applications,” Journal of Magnetism and Magnetic Materials, 2016, vol. 416, Pages 66-74, https://doi.org/10.1016/j.jmmm.2016.05.007.
39. Taeuber, Karl E., et al. “Scientific American Volume 213, Issue 2.” Scientific American, 1 Aug. 1965, https://www.scientific.net/AMR.213.161.pdf
40. “Best Research-Cell Efficiency Chart”, https://www.nrel.gov/pv/cell-efficiency.html (accessed: September 2023).
41. Liu, Hongyan, et al. “Bifacial Semitransparent Perovskite Solar Cells with MoOx/Cu/Ag/MoOx Multilayer Transparent Electrode.” Solar Energy, 2021, Volume 228, Pages 290-298, ISSN 0038-092X.
42. González, G. B., et al., “Relationship between Electrical Properties and Crystallization of Indium Oxide Thin Films Using Ex-Situ Grazing-Incidence Wide-Angle X-Ray Scattering” J. Appl. Phys. 2017, 121, 205306 https://doi.org/10.1063/1.4984054.
43. Tumen-Ulzii, Ganbaatar, et al., “Understanding the Degradation of Spiro‐OMeTAD‐Based Perovskite Solar Cells at High Temperature.” Solar RRL, 2020 4, 2000305 https://doi.org/10.1002/solr.202000305.
44. Liu, Hongyan, et al., “Bifacial Semitransparent Perovskite Solar Cells with MoOx/Cu/Ag/MoOx Multilayer Transparent Electrode.” Solar Energy, 2021 Volume 228, Pages 290-298, https://doi.org/10.1016/j.solener.2021.09.065.
45. Green, Martin A., et al. "The Emergence of Perovskite Solar Cells." Nature photonics 2014, 8.7 506-514, https://doi.org/10.1038/NPHOTON.2014.134
46. Cheng Y, Ding L. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications. SusMat. 2021; 1: 324–344. https://doi.org/10.1002/sus2.25.
47. “Effect of Parasitic Resistances.” PVEducation, www.pveducation.org/pvcdrom/solar-cell-operation/effect-of-parasitic-resistances.
48. Li, Kasi. “2024 Ultimate Guide to Bifacial Solar Panels - Gycx Solar Smart Energy Solutions.” GYCX SOLAR, 2024, gycxsolar.com/bifacial-solar-panels/.
49. “Pulsed DC Magnetron Sputtering: DC Sputtering Process.” VacCoat, 2024, vaccoat.com/blog/pulsed-dc-magnetron-sputtering/.
50. Senthilkumar, V., et al., “Structural and Optical Properties of Indium Tin Oxide (ITO) Thin Films with Different Compositions Prepared by Electron Beam Evaporation, Vacuum, 2010 vol. 84, Pages 864–869.
51. Beche, Eric, et al., “Ce 3d XPS Investigation of Cerium Oxides and Mixed Cerium Oxade (CexTiyOz).” Surf. Interface An al. 2008; vol. 40: Pavolumeges 264–267
52. “Buying Solar Panels in 2024: The Complete Guide.” EnergySage, www.energysage.com/solar/.