簡易檢索 / 詳目顯示

研究生: 林士廷
Lin, Shih-ting
論文名稱: 有機光電元件之製程設計與載子傳輸機制之探討
Fabrication and Carriers Transport Studying for Organic Electro-optic Devices
指導教授: 周維揚
Chou, Wei-yang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 152
中文關鍵詞: 噴墨列印偏極化光有機發光二極體有機薄膜電晶體有機元件
外文關鍵詞: organic device, polarized light, inkjet printing, OLED, OTFT
相關次數: 點閱:93下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討有機光電元件之製造與載子傳輸行為。共分為四大部份,第一部份為研究可發出偏極化光之有機元件,第二部份為噴墨列印技術製程,第三部份為利用準分子雷射創造出新的有機元件結構,第四部份使用氧電漿處理法控制有機薄膜電晶體之起始電壓。此四部份依序於下分別敘述:
    (一) 離子束配向於有機發光二極體之偏極化研究
    有機發光二極體為一具有潛力之顯示應用材料,在第一部份中我們利用藍光材料4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl (BECVB)以機械式摩擦配向以及離子束配向(Ion-Beam-Alignment)於電洞注入/傳輸層Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT:PSS),製作出可發出偏極化光的有機發光二極體 (Organic Light Emitting Diode, OLED) ,也使用了摩擦 PI 配向層及光配向的方式來排列 BECVD 材料,並且比較各種不同配向方式的螢光(Photoluminescence) 偏振異向性比 (Dichroic Ratios)。

    (二) PEDOT:PSS 熱氣泡式噴印技術於有機發光二極體之研究
    在第二部份中展現了噴墨列印技術與旋轉塗佈法製程對於陽極PEDOT:PSS材料成膜特性的研究。探討其不同製程方式所對應的薄膜型態以及能階之改變,我們利用拉曼光譜 (Raman Spectroscopy) 探討PEDOT:PSS 固態薄膜分子鏈的排列情形。量測出的結果用來解釋PLED(Polymer Light Emitting Diodes)元件電激螢光光譜 (Electroluminance, EL) 與PLED的成膜特性。最後我們利用噴墨列印技術製造出PEDOT:PSS薄膜在 PLED元件中其電洞注入之能力大於轉塗佈法製程,這表示於噴墨列印技術能夠製作出具有較好特性的 PLED 元件。
    (三) 準分子雷射於有機薄膜電晶體之應用
    有機薄膜電晶體 (Organic Thin Film Transistors, OTFTs) 因其具有製程簡易、結構簡單與低製程溫度等優點,故已被廣泛應用於軟性電子產品 (Flexible Electronics) 中的作為許多研究的主題在第三部份中我們利用氟化氪準分子雷射 (KrF Excimer Laser) 照射在OTFTs元件中氧化銦錫 (Indium-Tin-Oxide, ITO) 之源/汲電極上,ITO 電極經照射後其功函數會提升,利用此方法我們能夠製造出不同功函數之源極與汲極,此方式可有效的壓抑元件的漏電流、簡化製程與保持元件本身的載子遷移率等優點。
    (四) 利用氧電漿處理控制有機薄膜電晶體之起始電壓
    起始電壓 (Threshold Voltage, VT) 為薄膜電晶體中最重要的參數之一,一般而言精確的控制薄膜電晶體之起始界壓對可靠的電路操作而言是不可或缺的,在第四部份中,我們對於有機薄膜電晶體的起始電壓控制提供了另外一種新的方法,我們利用聚胺酯 (Polyurethane, PU),以旋轉塗佈法當作絕緣層並且施以氧電漿的表面處理,並量測其表面能在不同氧電漿能量下之變化,並發現絕緣層之表面能與元件之起始電壓具有特定之關係,使我們能夠藉由控制表面能進而控制元件之起始電壓,為元件起始電壓控制開創了一個新的方式。

    The main purpose of this dissertation is to study new fabrication processes and mechanism of carrier transport for organic optoelectronic devices. The investigations in this thesis include four parts: 1) study of polarized luminescence from organic material aligned by ion-beam-processed poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), 2) polymer light-emitting diodes with thermal inkjet printed PEDOT:PSS, 3) excimer laser irradiation induced suppression of off-state leakage current in organic thin-film transistors (OTFTs), and 4) controllable threshold voltage OTFTs by O2 plasma treatment on surface of polyurethane dielectrics. The brief descriptions of four parts are as follows,
    (1) Study of polarized luminescence from organic material aligned by ion-beam-processed poly(3,4-ethylenedioxythiophene): polystyrenesulfonate
    Currently organic light-emitting diodes (OLEDs) have attracted a lot of interests as a new display technology. In the first part, we prepare a polarized OLEDs based on 4,4’-Bis[2-9(-ethyl-3-carbazoyl)vinylenyl]-1,1’-biphenyl (BECVB), which emitted polarized blue light, aligned by ion-beam-processed and rubbing-processed hole- injecting/-transport poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer. A rubbing polyimide and photoalignment polyimide were also used to align BECVB. The dichroic ratios of linearly polarized photoluminescence of BECVB films aligning by various techniques were compared.
    (2)Polymer light-emitting diodes with thermal inkjet printed PEDOT:PSS
    In the second part, PEDOT:PSS films, prepared by inkjet-printing and spin-coating methods, have been studied using atomic force microscopy, micro-Raman spectroscopy, photoelectron spectroscopy, and four-point probe conductivity measurements. Electrical conductivity of the inkjet-printed film was enhanced by a factor of around 10 when compared to a spin-coating film. The improved conductivity was attributed to longer effective conjugation length of PEDOT chains in inkjet-printing PEDOT:PSS films as suggested by their micro-Raman spectroscopy. PEDOT:PSS films formed by the inkjet-printing method are appropriate for use as an anode for simplification of the fabrication process of polymer light-emitting diodes whose performance is about 1.2 cd/A.
    (3)Excimer laser irradiation induced suppression of off-state leakage current in organic transistors
    We report the suppression of the OFF-state leakage current and subthreshold swing (SS) in inkjet-printed poly(3-hexylthiophene) (P3HT) thin-film transistors with asymmetric work function source and drain electrodes. Indium-tin-oxide (ITO) material was used as source/drain electrodes and the source electrode was irradiated by KrF excimer laser. The dominant mechanisms for the suppressive IOFF could be attributed to the increase in the work function of ITO source irradiated by the excimer laser. Lower trap state density formed on the laser-irradiated source electrode. Holes could be easily injected into the channel at small lateral electric field resulting in smaller threshold voltage and SS.
    (4)Adjust threshold voltage device by O2 plasma treatment on polyurethane modified dielectrics
    Threshold voltage is one of the most important parameters for OTFTs. In the fourth part, we provide a new method to control the threshold voltage. A polyurethane (PU) films play the gate dielectric layers within OTFTs. The PU layer formed by spin coating and then the surface of PU treated under O2 plasma. Finally, organic polymer P3HT was inkjet-printed on the surface of PU to complete an OTFT. The threshold voltage of OTFTs increases with increasing the power of the O2 plasma. Additionally, the on-off ratio of OTFTs enhances three orders when the power of O2 plasma is above 500 W. Therefore, the method of O2 plasma treatment could effectively enhance the performance of OTFTs.

    中文摘要 ..I 英文摘要 .IV 誌謝 VII 目錄……………………………………………………………………….....IX 表目錄 ....XII 圖目錄……………………………………………………………………..XIII 第1章 緒論 1 1-1有機發光二極體 1 1-2有機薄膜電晶體 6 1-3蕭基二極體之原理 8 1-4載子傳輸機制 ..14 1-5有機薄膜電晶體特性公式 ..18 第2章 離子束配向於有機發光二極體之偏極化研究 ..33 2-1簡介 ..33 2-2偏極化光之理論 ..35 2-3實驗製程 ..38 2-4結果與討論 ..40 2-5結論 ..44 第3章 PEDOT:PSS熱氣泡式噴印技術於有機發光二極體元件製程 ..54 3-1簡介 ..54 3-2熱氣泡式噴墨原理 ..57 3-3實驗製程 ..58 3-4結果與討論 ..61 3-5總結 ..66 第4章 應用準分子雷射於有機半導體之元件 ..77 4-1簡介 ..77 4-2主動式顯示驅動技術 ..79 4-3實驗製程 ..80 4-4結果與討論 ..82 4-5結論 ..86 第5章 藉由氧電漿處理法製作可調式臨界電壓之有機薄膜電晶體 ..95 5-1簡介 ..95 5-2表面能之量測 ..97 5-3實驗製程 ..99 5-4結果與討論 101 5-5總結 105 第6章 總結與展望 115 參考文獻 119 著作目錄 128 自述 133

    [1.1] M. Pope, H. Kallmann, and P. Magnante, J. Chem. Phys. 38, 2042 (1963).
    [1.2] W. Helfrich, and W.G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
    [1.3] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
    [1.4] R. H. Partridge, Polymer 24, 734 (1983).
    [1.5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990).
    [1.6] M. Wohlgenannt, and K. Tandon, Nature 409, 494. (2001).
    [1.7] J. Gonzalo, P. E. Dyer, and M. Hird, “Pulsed laser deposition of liquid crystals”, Appl. Phy. Lett. 71, 19 (1997).
    [1.8] Y. Liu, T. Cui, and K. Varahramyan, Soild-State electronics 47, 811 (2003).
    [1.9] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 15 (2000).
    [1.10] M. Leufgen, A. Lebib, T. Muck, U. Bass, V. Wagner, T. Borzenko, G. Schmidt, J. Geurts, and L. W. Molenkamp, Appl. Phys. Lett. 84, 12 (2004).
    [1.11] C. D. Dimitrakopoulos, and P. R. Malenfant, Adv. Mater. 14, 16 (2002).
    [1.12] G. E. Jellison, Jr, and H. H. Burke, J. Appl. Phy. 60(2), 841 (1986).
    [1.13] C. Daboo, M. J. Baird, H. P. Hughes, N. Apsley, and M. T. Emeny, Thin Solid Films 201, 9 (1991).
    [1.14]鍾昇峰 “共軛高分子於有機光電元件應用之研究” 國立成功大學博士論文 (2005).
    [1.15] E. M. Conwell, Phys. Rev. 103, 51 (1956).
    [1.16] N. F. Mott, Canadian J. Phys. 34, 1356 (1956).
    [1.17] D. D. Eley, H. Inokuchi, and M. R. Willis, Discus. Faraday Soc. 28, 54 (1959).
    [1.18] R. M. Glaeser, and R. S. Berry, J. Chem. Phys. 44, 3797 (1966)
    [1.19] P. G. Le Comber, and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970).
    [1.20]郭家瑋 “有機薄膜電晶體之載子傳輸特性研究” 國立成功大學博士論文 (2006).
    [2.1] C. W. Tang, and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
    [2.2] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
    [2.3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature 397, 121 (1999).
    [2.4] T. Mikami, and H. Yanagi, Appl. Phys. Lett. 73, 563 (1998).
    [2.5] H. Yanagi, S. Okamoto, and T. Mikami, Synth. Met. 91, 91, (1997).
    [2.6] M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Adv. Mater. 9, 798 (1997).
    [2.7] M. Redecker, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, Appl. Phys. Lett. 74, 1400 (1997).
    [2.8] M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf, and A. Yasuda, Adv. Mater. 11, 671 (1997).
    [2.9] M. Jandke, P. Strohriegl, J. Gmeiner, W. Brütting, and M. Schwoerer, Adv. Mater. 11, 1518 (1999).
    [2.10] P. Dyreklev, M. Berggren, O. Inganäs, M. Andersson, O.Wennerström, and T. Hjertberg, Adv. Mater. 7, 43 (1995).
    [2.11] V. Cimrovµ, M. Remmers, D. Neher, and G. Wegner, Adv. Mater. 8, 146 (1996).
    [2.12] M. Grell, and D. D. C. Bradley, Adv. Mater. 11, 899 (1999).
    [2.13] H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. D. C. Bradley, Appl. Phys. Lett. 77, 406 (2000).
    [2.14] W. Y. Chou, and H. L. Cheng, Adv. Func. Mater. 14, 811 (2004).
    [2.15] Y. Yamada, and H. Yanagi, Appl. Phys. Lett. 76, 23, (2000).
    [3.1] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroghes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature 397, 121 (1999).
    [3.2] H. W. Heuer, R. Wehrmann, and S. Kirchmeyer, Adv. Funct. Mater. 12, 89 (2002).
    [3.3] D. Nilsson, T. Kugler, P-O. Svensson, and M. Berggren, Sens. Actuators B-Chem. 86, 193 (2002).
    [3.4] M. Chen, D. Nilsson, T. Kugler, M. Berggren, and T. Remonen, Appl. Phys. Lett. 81, 2011 (2002).
    [3.5] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
    [3.6] J. Quyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang. Adv. Funct. Mater. 15, 203 (2005).
    [3.7] B. Ballarin, A. Fraleoni-Morgera, D. Frascaro, S. Marazzita, and C. Piana, L. Setti, Synth. Met. 146, 201 (2004).
    [3.8] T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films 438, 279 (2003).
    [3.9] B-J. de Gans, P. C. Duineveld, and U. S. Schubert, Adv. Mater. Rev. 16, 203 (2004).
    [3.10] J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, and G. Li, J. Shinar, Polymer 45, 8443 (2004).
    [3.11] S. Garreau, J. L. Duvail, and G. Louarn, Synth. Met. 125, 325 (2002).
    [3.12] J. L. Duvail, P. Re´tho, S. Garreau, G. Louarn, and C. Godon, S. Demoustier- Champagne, Synth. Met. 131, 123 (2002).
    [3.13] S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, and S. Lefrant, Macromolecules 32, 6807 (1999).
    [3.14] G. Greczynski, Th. Kugler, and W. R. Salaneck, Thin Solid Films 354, 129 (1999).
    [3.15] H. J. Snaith, H. Kenrick, M. Chiesa, and R. H. Friend, Polymer 46, 2573 (2005).
    [3.16] G. Wantz, L. Hirsch, N. Huby, L. Vignau, J. F. Silvain, A. S. Barrie´re, and J.P. Parneixa, Thin Solid Films 485, 247 (2005).
    [3.17] Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171 (1997).
    [3.18] H. Lee, A. Johnson, and J. Kanicki, IEEE Tra. Ele. Dev. 53, 427 (2006).
    [3.19] M. Akimoto, Y. Furukawa, H. Takeuchi, and I. Harada, Synth. Met. 15, 353 (1986).
    [3.20] B. Tian, G. Zerbi, R. Schenk, and K. Mullen, J. Chem. Phys. 95, 3191 (1991).
    [3.21] H. L. Cheng, and K. F. Lin, J. Polym. Res. 6, 123 (1999).
    [4.1] S. Pyo, H. Son, K. Y. Choi, M. H. Yib, and S. K. Hong, Appl. Phys. Lett. 86, 133508 (2005).
    [4.2] W. Y. Chou, and H. L. Cheng, Adv. Funct. Mater. 14, 811 (2004).
    [4.3] S. C. Lim, S. H. Kim, J. H. Lee, H. Y. Yu, Y. Park, D. Kim, and T. Zyung, Mater. Sci. Eng. B. 121, 211 (2005).
    [4.4] C. K. Song, B. W. Koo, S. B. Lee, and D. H. Kim, Jpn. J. Appl. Phys. 41, 2730 (2002).
    [4.5] F. Xue, Z. Liu, Y. Su, and K. Varahramyan, Microelectron. Eng. 83, 298 (2006).
    [4.6] Y. H. Kim, S. K. Park, D. G. Moon, W. K. Kim, and J. I. Han, Jpn. J. Appl. Phys. 43, 3605 (2004).
    [4.7] G. Wang, T Hirasa, D. Moses, and A. J. Heeger, Synth. Met. 146, 127 (2004).
    [4.8] F. Xue, Y. Su, and K. Varahramyan, IEEE Trans. Electron Dev. 52, 1982 (2005).
    [4.9] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, IEEE Trans. Electron Dev. 49, 2008 (2002).
    [4.10] M. J. Deen, M. H. Kazemeini, Y. M. Haddara, J. Yu, G. Vamvounis, S. Holdcroft, and W. Woods, IEEE Trans. Electron Dev. 51, 1892 (2004).
    [4.11] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, and M. G. Kwak, Synth. Met. 139, 377 (2003).
    [4.12] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, IEEE Trans. Electron. Dev. 52, 1519 (2005).
    [4.13] K. M. Chang, Y. H. Chung, and G. M. Lin, IEEE Electron Dev. Lett. 23, 255 (2002).
    [4.14] A. A. Orouji, and M. J. Kumar, IEEE Trans. Electron. Dev. and Mater. Rel. 5, 675 (2005).
    [4.15] M. S. Shieh, Y. J. Lin, C. M. Yu, and T. F. Lei, Nucl. Instr. and Meth. in Phys. Res. B. 237, 223 (2005).
    [4.16] L. Sun, D. Y. Li, S. D. Zhang, X. Y. Liu, Y. Wang, and R. Q. Han, Semicond. Sci. Technol. 21, 608 (2006).
    [4.17] Y. J. Lin, W .Y. Chou, S. T. Lin, and Y. M. Chen, Jpn. J. Appl. Phys. 44, 1218 (2005).
    [4.18] A. R. Völkel, R. A. Street, and D. Knipp, Phys. Rev. B 66, 195336 (2002).
    [5.1] 施敏 “半導體元件物理與製作技術” 國立交通大學出版社 298 (2002).
    [5.2] C. W. Chu, S. H. Li, C. W. Chen, V. Shrotriya, and Y. Yang, Appl. Phys. Lett. 87, 193508 (2005).
    [5.3] W. K. Kim, K. Hong, and J. L. Lee, Appl. Phys. Lett. 89, 142117 (2006).
    [5.4] J. Park, S. I. Kang, S. P. Jang, and J. S. Choi, Jpn. J. Appl. Phys. 44, 648 (2005).
    [5.5] K. S. Pyo, and C. K. Song, Thin Solid Films 485, 230 (2005).
    [5.6] K. Lee, J. H. Kim, and S. Im, Appl. Phys. Lett. 88, 023504 (2006).

    下載圖示 校內:2017-08-06公開
    校外:2022-08-06公開
    QR CODE