簡易檢索 / 詳目顯示

研究生: 梁伯庭
Liang, Bo-Ting
論文名稱: 毛細力驅動被動式平面擋板微混合器之模擬與實驗
Simulation and experiment of capillary driven passive planar baffle micro-mixer
指導教授: 鍾震桂
Chung, Chen-Kuei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: 微流體微混合器毛細力表面張力
外文關鍵詞: microfluidic, micro-mixer, capillary, surface tension
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微混合器是實驗室晶片中重要的元件,依據其驅動方式分為主動式與被動式兩種。其中被動式混合器的優點主要在於製程簡單且容易整合其它元件。若其能進一步以毛細力達到流體自驅動,將能夠免除晶片內外幫浦的使用,並使實驗室晶片的應用提升且簡化實驗操作。
    本論文目標是提出毛細力自驅動且易製造的被動式擋板混合器。使用壓克力薄板(2 mm)為基材,並以二氧化碳雷射進行加工後,利用熱壓接合完成晶片,再以光學顯微鏡來進行實驗觀察。
    本研究透過觸動閥以及四種檔板結構的搭配,分別為交錯檔板結構、修正型交錯擋板結構、修正型平行檔板結構和蜿蜒流道擋板結構。藉由毛細壓力分析,找出混合器流道高度的設計區間並以實驗驗證之。同時透過2D數值模擬,了解混合器在不同擴散系數下的混合機制與效果。
    研究顯示出兩大主要結果:透過對交錯擋板結構的修正,能夠提升混合器流道高度的設計區間(至220~400 μm)。並發現蜿蜒擋板結構具有最長的混合區滯留時間(52秒)與最短的平均擴散距離(300 μm),因此具有最佳的混合效率(94%)。

    Micro-mixer, which is divided into active and passive micro-mixer according to driving method, is an important component in Lab on chip. The passive micro-mixer has advantages of easy fabrication and integration. For more applications and simplifying experimental operation, it is better to use capillary driven without any on or off-chip micro-pump.
    In the study, we present a capillary driven and easily fabricated passive planar baffle micro-mixer. The micro-mixers were fabricated in PMMA sheets (2 mm in thickness) by CO2 laser ablation and thermal bonding, and the experimental result were observed and recorded using a CCD camera.
    We design four baffle structures with trigger valve. The four baffle structures are staggered baffle structure, modified staggered baffle structure, modified paralled baffle structure, and meander baffle structure. And we investigate the design range of channel height by capillary pressure analysis and take experiment. In addition, 2D numerical simulations were used to estimate mixing mechanism and efficiency in different diffusion coefficient.
    Our results show that channel height design ranges (to 220~400 μm) can be promoted by modifying the staggered baffle structure, and then meander baffle structure mixer performs best mixing efficiency (94%) because of longest resident time (52 sec) and shortest average diffusion distance (300 μm) in mixing zone.

    摘要 I SUMMARY II 致謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.2.1 混合器方法與類型文獻 4 1.2.2 毛細力驅動與控制文獻 13 1.2.3 毛細力驅動之混合器文獻 18 1.3 研究目的 23 第二章 實驗與方法 24 2.1 儀器介紹 24 2.1.1 二氧化碳雷射機台 24 2.1.2 超音波清洗機 25 2.1.3 類比式加熱板 26 2.1.4 影像擷取系統 27 2.2 晶片設計 28 2.2.1 混合區設計 28 2.2.2 出口區設計 30 2.2.3 入口區設計 31 2.3 混合器模擬 33 2.3.1 基本假設與數值方法 33 2.3.2 模擬流程與參數設定 35 2.3.2.1 混合區模擬設計 35 2.3.2.2 ESI-CFD software前處理 37 2.3.2.3 ESI-CFD software中處理 39 2.3.2.4 ESI-CFD software後處理 41 2.4 晶片製作 42 2.4.1 基材準備與清洗 42 2.4.2 二氧化碳雷射加工 43 2.4.3 超音波清洗 46 2.4.4 低壓熱接合 46 2.5 混合效果評估 48 第三章 結果與討論 50 3.1 交錯型擋板結構混合器的模擬結果 50 3.1.1 不同時間下液面位置之模擬結果 50 3.1.2 填充前期流場向量與濃度分佈之模擬結果 54 3.1.3 擴散係數在不同時間點下對混合影響之模擬結果 59 3.1.3.1 高級別擴散係數下的混合結果 59 3.1.3.2 低級別擴散係數下的混合結果 61 3.1.4 擋板數目對混合效果的影響 63 3.2 各擋板結構下流道高度對毛細力流動的影響 65 3.3 不同流道高度下之觸動閥流動測試結果 69 3.4 交錯擋板與其修正型結構之流動測試結果 72 3.5 修正型平行擋板與蜿蜒流道結構之流動測試結果 75 3.6 修正型交錯擋板與蜿蜒流道結構下之混合結果 77 第四章 結論 84 參考文獻 86

    1. Lim, Y.C., A.Z. Kouzani, and W. Duan, Lab-on-a-chip: a component view. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2010. 16(12): p. 1995-2015.
    2. Stone, H.A., A.D. Stroock, and A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of Fluid Mechanics, 2004. 36(1): p. 381-411.
    3. Kim, D.S., et al., Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip, 2006. 6(6): p. 794-802.
    4. Fu, L.M. and C.H. Lin, A rapid DNA digestion system. Biomed Microdevices, 2007. 9(2): p. 277-86.
    5. Ko, Y.J., et al., DNA ligation using a disposable microfluidic device combined with a micromixer and microchannel reactor. Sensors and Actuators B-Chemical, 2011. 157(2): p. 735-741.
    6. Hou, H.H., et al., Rapid glucose concentration detection utilizing disposable integrated microfluidic chip. Microfluidics and Nanofluidics, 2011. 11(4): p. 479-487.
    7. Chung, C.K., et al., Design and experiments of a short-mixing-length baffled microreactor and its application to microfluidic synthesis of nanoparticles. Chemical Engineering Journal, 2011. 168(2): p. 790-798.
    8. Palanisamy, B. and B. Paul, Continuous flow synthesis of ceria nanoparticles using static T-mixers. Chemical Engineering Science, 2012. 78: p. 46-52.
    9. Nguyen, N.-T. and Z. Wu, Micromixers—a review. Journal of Micromechanics and Microengineering, 2005. 15(2): p. R1-R16.
    10. Lee, C.Y., et al., Microfluidic mixing: a review. Int J Mol Sci, 2011. 12(5): p. 3263-87.
    11. Capretto, L., et al., Micromixing within microfluidic devices. Top Curr Chem, 2011. 304: p. 27-68.
    12. Lu, L.H., K.S. Ryu, and C. Liu, A magnetic microstirrer and array for microfluidic mixing. Journal of Microelectromechanical Systems, 2002. 11(5): p. 462-469.
    13. Tsai, J.H. and L.W. Lin, Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump. Sensors and Actuators a-Physical, 2002. 97-8: p. 665-671.
    14. Fu, L.M., et al., Chaotic vortex micromixer utilizing gas pressure driving force. Chemical Engineering Journal, 2013. 214: p. 1-7.
    15. Sun, C.-L. and J.-Y. Sie, Active mixing in diverging microchannels. Microfluidics and Nanofluidics, 2009. 8(4): p. 485-495.
    16. Kim, D.S., et al., A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip, 2005. 5(7): p. 739-47.
    17. Mengeaud, V., J. Josserand, and H.H. Girault, Mixing processes in a zigzag microchannel: finite element simulations and optical study. Anal Chem, 2002. 74(16): p. 4279-86.
    18. Stroock, A.D., et al., Chaotic mixer for microchannels. Science, 2002. 295(5555): p. 647-51.
    19. Shih, T.R. and C.K. Chung, A high-efficiency planar micromixer with convection and diffusion mixing over a wide Reynolds number range. Microfluidics and Nanofluidics, 2007. 5(2): p. 175-183.
    20. Bhagat, A.A.S., E.T.K. Peterson, and I. Papautsky, A passive planar micromixer with obstructions for mixing at low Reynolds numbers. Journal of Micromechanics and Microengineering, 2007. 17(5): p. 1017-1024.
    21. Wu, Z.G. and N.T. Nguyen, Rapid mixing using two-phase hydraulic focusing in microchannels. Biomedical Microdevices, 2005. 7(1): p. 13-20.
    22. Bessoth, F.G., A.J. deMello, and A. Manz, Microstructure for efficient continuous flow mixing. Analytical Communications, 1999. 36(6): p. 213-215.
    23. Neerincx, P.E., et al., Compact Mixing Using Multiple Splitting, Stretching, and Recombining Flows. Macromolecular Materials and Engineering, 2011. 296(3-4): p. 349-361.
    24. Buchegger, W., et al., Fabrication and characterization of a vertical lamination micromixer for mid-IR spectroscopy. Sensors and Actuators B-Chemical, 2011. 159(1): p. 336-341.
    25. Lee, S.W., et al., A split and recombination micromixer fabricated in a PDMS three-dimensional structure. Journal of Micromechanics and Microengineering, 2006. 16(5): p. 1067-1072.
    26. Chen, Z., et al., Performance analysis of a folding flow micromixer. Microfluidics and Nanofluidics, 2008. 6(6): p. 763-774.
    27. Aref, H., Stirring by Chaotic Advection. Journal of Fluid Mechanics, 1984. 143(Jun): p. 1-21.
    28. Ottino, J.M. and S. Wiggins, Introduction: mixing in microfluidics. Philos Trans A Math Phys Eng Sci, 2004. 362(1818): p. 923-35.
    29. Engler, M., et al., Numerical and experimental investigations on liquid mixing in static micromixers. Chemical Engineering Journal, 2004. 101(1-3): p. 315-322.
    30. Soleymani, A., E. Kolehmainen, and I. Turunen, Numerical and experimental investigations of liquid mixing in T-type micromixers. Chemical Engineering Journal, 2008. 135: p. S219-S228.
    31. Liu, R.H., et al., Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectromechanical Systems, 2000. 9(2): p. 190-197.
    32. Ansari, M.A. and K.Y. Kim, Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chemical Engineering Journal, 2009. 146(3): p. 439-448.
    33. Hossain, S., M.A. Ansari, and K.Y. Kim, Evaluation of the mixing performance of three passive micromixers. Chemical Engineering Journal, 2009. 150(2-3): p. 492-501.
    34. Sudarsan, A.P. and V.M. Ugaz, Fluid mixing in planar spiral microchannels. Lab Chip, 2006. 6(1): p. 74-82.
    35. Li, P., J. Cogswell, and M. Faghri, Design and test of a passive planar labyrinth micromixer for rapid fluid mixing. Sensors and Actuators B-Chemical, 2012. 174: p. 126-132.
    36. Jen, C.P., et al., Design and simulation of the micromixer with chaotic advection in twisted microchannels. Lab Chip, 2003. 3(2): p. 77-81.
    37. Lin, Y.C., Y.C. Chung, and C.Y. Wu, Mixing enhancement of the passive microfluidic mixer with J-shaped baffles in the tee channel. Biomed Microdevices, 2007. 9(2): p. 215-21.
    38. Chen, L., et al., Evaluation of passive mixing behaviors in a pillar obstruction poly(dimethylsiloxane) microfluidic mixer using fluorescence microscopy. Microfluidics and Nanofluidics, 2008. 7(2): p. 267-273.
    39. Fries, D., S. Waelchli, and P. Rudolfvonrohr, Gas–liquid two-phase flow in meandering microchannels. Chemical Engineering Journal, 2008. 135: p. S37-S45.
    40. Melin, J., et al., A fast passive and planar liquid sample micromixer. Lab Chip, 2004. 4(3): p. 214-9.
    41. Jong, W.R., et al., Flows in rectangular microchannels driven by capillary force and gravity. International Communications in Heat and Mass Transfer, 2007. 34(2): p. 186-196.
    42. Bouaidat, S., et al., Surface-directed capillary system; theory, experiments and applications. Lab Chip, 2005. 5(8): p. 827-36.
    43. Kim, S.J., et al., Passive microfluidic control of two merging streams by capillarity and relative flow resistance. Anal Chem, 2005. 77(19): p. 6494-9.
    44. Chen, J.M., P.-C. Huang, and M.-G. Lin, Analysis and experiment of capillary valves for microfluidics on a rotating disk. Microfluidics and Nanofluidics, 2007. 4(5): p. 427-437.
    45. Thio, T.H., et al., Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Med Biol Eng Comput, 2013. 51(5): p. 525-35.
    46. Melin, J., et al., A liquid-triggered liquid microvalve for on-chip flow control. Sensors and Actuators B-Chemical, 2004. 100(3): p. 463-468.
    47. Yang, I.D., et al., Surface tension driven and 3-D vortex enhanced rapid mixing microchamber. Journal of Microelectromechanical Systems, 2006. 15(3): p. 659-670.
    48. Chen, C.F., et al., A microfluidic nanoliter mixer with optimized grooved structures driven by capillary pumping. Journal of Micromechanics and Microengineering, 2006. 16(7): p. 1358-1365.
    49. Swickrath, M.J., S.D. Burns, and G.E. Wnek, Modulating passive micromixing in 2-D microfluidic devices via discontinuities in surface energy. Sensors and Actuators B-Chemical, 2009. 140(2): p. 656-662.
    50. Lee, C.T. and C.C. Lee, A capillary-driven micromixer: idea and fabrication. Journal of Micromechanics and Microengineering, 2012. 22(10): p. 105034.
    51. Cito, S., et al., Numerical simulation of wall mass transfer rates in capillary-driven flow in microchannels. International Communications in Heat and Mass Transfer, 2012. 39(8): p. 1066-1072.

    下載圖示 校內:2019-09-04公開
    校外:2024-08-01公開
    QR CODE