簡易檢索 / 詳目顯示

研究生: 陳奕瑞
Chen, Yi-Ray
論文名稱: 奈米碳管之電性分析與其在感測之應用
Analysis of the electronic properties of carbon nanotube and its application in detections
指導教授: 翁政義
Weng, Cheng-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 167
中文關鍵詞: 奈米碳管電性感測
外文關鍵詞: carbon nanotube, electronic property, detection
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用分子動力學與量子傳輸理論探討奈米碳管受外在環境(氣體、應變、溫度與壓力)影響下而導致電流之變化,其目的在探討奈米碳管是否適合應用在各種感測器上,藉以了解各類碳管之應用範圍與特性,以提供未來製作奈米級感測器之基礎。本文中矽基板與碳管之變形採用Tersoff勢能,而碳管之傳輸矩陣則利用Tight binding表示法與Green函數來加以描述,最後經由Landauer型式計算電流與電壓之曲線。
    在碳管吸附極性分子方面,結果顯示管長較短之半導體鋸齒狀碳管穿隧效應較為明顯,而電流與電壓(I-V)圖中階梯狀之曲線是由於電極擁有足夠之能量跨越碳管之離散能態所造成。此外,跳躍常數變小會導致電流變大,反之亦然。然而,管長較長之碳管電流之變化會增至數個數量級。因此,一般實驗所採用之碳管管長往往在數十或數百奈米之間,所以只要跳躍常數稍微改變便會導致電流明顯改變。
    在軸向應變對單壁碳管電流影響方面,顯示不論鋸齒狀或扶手椅碳管,跳躍常數均會隨著應變增加而變小。因此,造成(10,0)與(12,0)碳管之電流隨應變增加而規律地漸漸變小。而卻造成(11,0)碳管之電流隨著應變增加而非線性地增加,與(5,5)碳管受應變只造成電流微小且不規則之改變。所以(10,0)與(12,0)碳管適合用來作為奈米級應變感測器之使用,而(10,0)碳管適合用於不確定壓縮或拉伸之狀況,(12,0)碳管則適合用於拉伸應變小於0.16時。然而,(5,5)碳管在小應變時可作為具有穩定電流之導線。由以上之結果可知,在四類碳管中會有三種不同的趨勢出現,這是在巨觀下同種材質前所未有的現象。
    在軸向應變對雙壁碳管電流影響方面,顯示考慮層與層交互作用之雙壁奈米管曲線較為平滑,這是由於層與層間之交互作用造成能帶分裂,使得雙壁碳管擁有更多不同能量之離散能態所致,且層與層間之交互作用使電流受干擾而變小。由於鍵長之改變及層與層間距離之改變導致跳躍常數隨之改變,造成(5,5)/(10,10)雙壁碳管受應變時電流只有微小且不規則之改變,因此,雙壁扶手椅碳管在小應變時具有提供穩定電流之特性。然而,(9,0)/(18,0)雙壁碳管之電流隨應變增加而規律地漸漸變小,因此,雙壁鋸齒狀碳管可以作為奈米級之應變感測器使用,但其量測之範圍會隨管徑之增加而變小。由於雙壁奈米管之電流較大,因此在量測與應用上較為容易。
    在矽基板上之碳管對於溫度變化導致電流之影響方面,顯示扶手椅碳管電流與電壓圖中,漏電流會隨著管長增加而週期性出現,這是由於共振穿隧效應所造成。當溫度增加時矽基板之晶格長度與碳管之鍵長會隨之變長,因此導致跳躍常數隨之變小。此外,不論在(12,0)鋸齒狀或(5,5)扶手椅狀碳管中量測電壓較低時電流變化之靈敏度較高。但在(5,5)碳管卻發現在較高之電壓值會有較大之溫度線性量測範圍出現,由以上之結果顯示(12,0)鋸齒狀與(5,5)扶手椅狀碳管均可以作為奈米級之溫度感測器,而其量測之範圍分別為200~420 K與300~440 K。
    在壓力變化對於奈米碳管電流之影響方面,顯示不論是扶手椅狀或鋸齒狀碳管壓力增加時鍵長均會變短。在(10,10)扶手椅碳管中發現隨管長增加電流與壓力之變化無特定之趨勢存在。而在(17,0)鋸齒狀碳管中,發現不同管長碳管之電流均隨壓力增加而增加,這是由於壓力變大時,原子間之距離變小導致穿隧電流變大所造成,且隨管長之增加電流之變化率會隨之增加。因此,推斷半導體鋸齒狀碳管可以利用陣列之形式來增加其電流之變化率,未來將可使用在壓力感測之應用。
    由以上之結果可以得知碳管之種類對於其電流變化有著密不可分之關係,且由於種類之不同導致可應用之範圍不同,最後希望本研究之結果未來可以提供以碳管作為奈米級感測器之理論依據與參考。

    Molecular dynamics (MD) simulations and quantum transport theory are employed to study the electronic properties of various carbon nanotubes (CNTs) under the influence of the environment (gas, strain, temperature and pressure) to analyze whether the properties of CNTs are suitable to be applied to various sensors, and then to understand the range and properties of applications in the nano-size sensors. The deformations of the silicon substrate and carbon nanotube are modeled using the Tersoff potential. The transfer matrix of the CNT is represented by the Tight-binding Hamiltonian and the Green’s function. Finally, the current-bias voltage properties of the nanotube are calculated via the Landauer formulism.
    In the way of the absorption of ion or polar molecule on the surface of CNT, the tunneling effect becomes more significant as the nanotube length decreases in semi-conductor zigzag nanotube. The result is found that the current-bias voltage profiles have a step-like form, in which each step corresponds to the voltage bias at which the energy imparted to the electrons is sufficient to cause them to hop between neighboring atoms. In addition, the normalized-current-voltage profiles exhibit prominent peaks as the hopping integral decreases and show distinct throughs as the hopping integral increases. In longer nanotubes, the current changes by several orders of magnitude in these peaks and troughs of the current-voltage curves. In general nanotube-based gaseous sensors, the typical tube lengths are of several tens to hundreds of nanometers, and hence the nanotube conductance changes significantly for even slight changes in the hopping integral.
    In the way of SWCNTs (Single-walled carbon nanotubes) under uniaxial strains, it is found that the hopping integral decreases as the tensional strain increases in zigzag and armchair nanotubes. Furthermore, in the (10,0) and (12,0) zigzag nanotubes, the current induced by the application of a suitable bias voltage varies linearly with the magnitude of the applied strain. Specifically, the electronic resistance decreases with increasing strain in (11,0) zigzag nanotube, while the current variations of different strains show the irregular and small perturbation in (5,5) armchair nanotube. Therefore, the (10,0) and (12,0) zigzag nanotubes are suitable for nanoscale, strain-sensing applications. However, the (10,0) nanotube is suitable for strain sensing applications in which the strain can act in either a compressive or a tensile direction, and the (12,0) nanotube is suitable for strain sensing applications in large tensile strain. Furthermore, the (5,5) armchair nanotube is a very suitable choice for a stable conducting wire. Overall, the normalized current with the uniaxial strain exhibits three quite distinct trends in the current zigzag and armchair nanotubes. The phenomenon does not appear in the macroscopic conducting wire.
    In the way of DWCNTs (Double-walled carbon nanotubes) under uniaxial strains, it is found that the I-V profiles of the interaction between two layers show the smoother curve. This is due to the energy band which is split by the interaction between two layers; as a result, more dispersed energy states exist in different energy levels in DWCNTs. In addition, the interactions interfere with the current, and it caused the current to become less in the interaction case. Furthermore, the current variations of different strains show the irregular and small perturbation in armchair DWCNT. Therefore, the armchair DWCNT is a very suitable choice for a stable conducting wire. In addition, the current induced by the application of a suitable bias voltage varies linearly with the magnitude of the applied strain in zigzag DWCNT. Therefore, the zigzag DWCNT is suitable for nanoscale, strain-sensing applications, but the range of detection capability becomes small with the diameter increases. However, the current in DWCNT are stronger than that in SWCNT, they are more easily used in the detection and application.
    In the way of CNTs deposited on silicon (Si) substrates under different temperature, the leakage current is generated periodically along the length of the armchair nanotube. The current is caused by the resonant transmission effects. Furthermore, the lattice constant of Si and the bond length of nanotube increase with the increasing of the temperature, and then the value of the hopping integral decreases as the temperature increases. The (12,0) zigzag and (5,5) armchair CNTs are both more sensitive to changes in the substrate temperature at lower values of the bias voltage. However, a wider detected temperature range appears at higher voltages. As commented above, the results show that the (12,0) zigzag and (5,5) armchair carbon nanotubes are suitable for temperature sensing applications over temperature ranges of 200~420 K and 300~440 K, respectively.
    In the way of CNT under different pressure, the results show that the bond length decreases with the increasing of the pressure in zigzag and armchair nanotubes. In the (10,10) armchair CNT, the current variations have not a specific tendency with the increasing of the pressure in different tube lengths. However, the current increases as the pressure increases in the zigzag CNT of different tube length, and this phenomenon results from the decreasing of the bond length as the pressure increases. Therefore, the leakage current becomes strong with the increasing of the pressure. The rate of current variation appears more obvious in the longer tube. As is mentioned above, the results show that the semi-conductor zigzag carbon nanotube is suitable for pressure sensing applications in the form of the tube array in the future.
    Overall, the results show that the current variation and the kind of nanotubes have close relationship. Therefore, there are many applications in different kinds of nanotubes. We hope that these results in this study could provide theoretical information and reference about the nano-size sensor.

    中文摘要 I ABSTRACT IV 誌謝 IX 表目錄 XV 圖目錄 XVI 符號說明 XXIV 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 碳管電性文獻回顧 4 1.2.2 碳管在感測器上之應用 6 1.3 研究動機與目的 13 1.4 本文架構 15 第2章 分子動力學與量子傳輸理論 18 2.1 勢能函數 18 2.1.1 Tersoff勢能函數 19 2.1.2 Lennard-Jones勢能函數 21 2.2 運動方程式 24 2.2.1 Verlet演算法 25 2.2.2 Leap frog演算法 26 2.2.3 Velocity verlet演算法 27 2.2.4 Gear predictor-corrector演算法 28 2.3 緊束法 32 2.4 傳輸特性 40 第3章 分子動力學與量子傳輸理論之數值模擬方法 44 3.1 物理模型 44 3.2 模擬參數與無因次化 46 3.3 邊界條件 48 3.4 初始條件 50 3.5 截斷半徑法 56 3.6 鍵長與鍵結能之關係 59 3.7 半無限長金屬電極端部之特徵值 61 3.8 電極與碳管間混成之關係 63 3.9 利用TIGHT-BINDING描述碳管之HAMILTONIAN矩陣 65 3.10 電流與電壓之計算 68 第4章 模擬結果分析與討論 70 4.1 碳管吸附極性分子對電流之影響 70 4.2 軸向應變對碳管電流之影響 82 4.2.1 軸向應變對單壁奈米碳管電流之影響 82 4.2.2 軸向應變對雙壁奈米碳管電流之影響用 105 4.3 溫度變化對於矽基板上碳管電流之影響 122 4.4 壓力變化對於奈米碳管電流之影響 138 第5章 結論與建議 154 5.1 結論 154 5.2 建議 154 參考文獻 156 自述 167

    1. Kroto HW, Heath JR, O'Brien SC, Curl RF and Smalley RE, “C60: Buckminster fullerene”, Nature 318, 162-163 (1985)
    2. Iijima S, “Helical microtubules of graphitic carbon”, Nature 354, 56-58 (1991)
    3. Saito R, Dresselhaus G and Dresselhaus MS, Physical properties of carbon nanotubes, Imperial College Press, London (1998)
    4. Nojeh A, Lakatos GW, Peng S, Cho K and Pease RFW, “A carbon nanotube cross structure as a nanoscale quantum device”, Nano Letters 3, 1187-1190 (2003)
    5. Peng S and Cho K, “Nano electro mechanics of semiconducting carbon nanotube”, J Appl. Mech-T. ASME 69, 451-453 (2002)
    6. Terrones M, Banhart F, Grobert N, Charlier JC, Terrones H and Ajayan PM, “Molecular junctions by joining single-walled carbon nanotubes”, Phys. Rev. Lett. 89, 075505-1-4 (2002)
    7. Terrones M, Charlier JC, Banhart F, Grobert N, Terrones H and Ajayan PM, “Towards nanodevice fabrication: Joining and connecting single-walled carbon nanotubes”, New Diam. Front. C Tec. 12, 315-323 (2002)
    8. Collins PG, Hersam M, Arnold M, Martel R and Avouris Ph, “Current saturation and electrical breakdown in multiwalled carbon nanotubes”, Phys. Rev. Lett. 86, 3128-3131 (2001)
    9. Collins PG, Arnold MS and Avouris P, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown”, Science 292, 706-709 (2001)
    10. http://www.mos.org/cst/article/4864/3.html
    11. Rocha CG, Dargam TG and Latge A, “Carbon nanotube quantum dots”, Phys. Status Solidi B 232, 37-43 (2002)
    12. Rocha CG, Dargam TG and Latge A, “Electronic states in zigzag carbon nanotube quantum dots”, Phys. Rev. B 65, 165431-1-7 (2002)
    13. Chico L, Sancho MPL and Munoz MC, “Carbon-nanotube-based quantum dot”, Phys. Rev. Lett. 81, 1278-1281 (1998)
    14. Menon M and Srivastava D, “Carbon nanotube T junctions: Nanoscale metal-semiconductor-metal contact devices”, Phys. Rev. Lett. 79, 4453-4456 (1997)
    15. Andriotis AN, Menon M, Srivastava D and Chemozatonskii L, “Ballistic switching and rectification in single wall carbon nanotube Y junctions”, Appl. Phys. Lett. 79, 266-268 (2001)
    16. Chico L, Crespi VH, Benedict LX, Louie SG and Cohen ML, “Pure carbon nanoscale devices: Nanotube heterojunctions”, Phys. Rev. Lett. 76, 971-974 (1996)
    17. Zhou D and Seraphin S, “Complex branching phenomena in the growth of carbon nanotubes”, Chem. Phys. Lett. 238, 286-289 (1995)
    18. Nagy P, Ehlich R, Biro LP and Gyulai J, “Y-branching of single walled carbon nanotubes”, Appl. Phys. A 70, 481-483 (2000)
    19. Biro LP, Ehlich R, Osvath Z, Koos A, Horvath ZE, Gyulai J and Nagy JB, “Room temperature growth of single-wall coiled carbon nanotubes and Y-branches”, Mater. Sci. Eng. C 19, 3-7 (2002)
    20. Satishkumar BC, Thomas PJ, Govindaraj A and Rao CNR, “Y-junction carbon nanotubes”, Appl. Phys. Lett. 77, 2530-2532 (2000)
    21. Deepak FL, Govindaraj A and Rao CNR, “Synthetic strategies for Y-junction carbon nanotubes”, Chem. Phys. Lett. 345, 5-10 (2001)
    22. Li J, Papadopoulos C and Xu JM, “Nanoelectronics: Growing Y-junction carbon nanotubes”, Nature 402, 253-254 (1999)
    23. Lambin Ph., Vigneron KP, Fonseca A, Nagy JB and Lucas AA, “Atomic structure and electronic properties of a bent carbon nanotube”, Synth. Met. 77, 249-252 (1996)
    24. Meunier V, Henrard L and Lambin Ph, “Energetics of bent carbon nanotubes”, Phys. Rev. B 57, 2586-2591 (1998)
    25. Collins PG, Zettl A, Bando H, Thess A and Smalley RE, “Nanotube nanodevice”, Science 278, 100-102 (1997)
    26. Saito R, Dresselhaus G and Dresselhaus MS, “Electronic structure of double-layer graphene tubules”, J. Appl. Phys. 73, 494-500 (1993)
    27. Charlier JC and Michenaud JP, “Energetics of multilayered carbon tubules”, Phys. Rev. Lett. 70, 1858-1861 (1993)
    28. Iijima S, “Growth of carbon nanotubes”, Mat. SciEng B-Solid 19, 172-180 (1993)
    29. Bockrath M, Cobden DH, McEuen PL, Chopra NG, Zettl A, Thess A and Smalley RE, “Single-electron transport in ropes of carbon nanotubes”, Science 275, 1922-1925 (1997)
    30. Xue Y and Ratner MA, “Electron transport in semiconducting carbon nanotubes with hetero-metallic contacts”, Nanotechnology 16, 5-9 (2005)
    31. Dag S, Gulseren O, Ciraci S and Yildirim T, “Electronic structure of the contact between carbon nanotube and metal electrodes”, Appl. Phys. Lett. 83, 3180-3182 (2003)
    32. Bachtold A, Hadley P, Nakanishi T and Dekker C, “Logic circuits with carbon nanotube transistors”, Science 294, 1317-1320 (2001)
    33. Derycke V, Martel R, Appenzeller J and Avouris P, “Logic circuits with carbon canotube transistors”, Nano Letter 1, 453-456 (2001)
    34. Wind SJ, Appenzeller J, Martel R, Derycke V and Avouris Ph, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes”, Appl. Phys. Lett. 80, 3817-3819 (2002)
    35. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K and Dai H, “Nanotube molecular wires as chemical sensors”, Science 287, 622-625 (2000)
    36. Wong YM, Kang WP, Davidson JL, Wisitsora-at A and Soh KL, “A novel microelectronic gas sensor utilizing carbon nanotubes for hydrogen gas detection”, Sensor Actuat. B Chem. 93, 327-332 (2003)
    37. Abraham JK, Philip B, Witchurch A, Varadan VK and Reddy CC, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor”, Smart Mater. Struct. 13, 1045-1049 (2004)
    38. Li J, Lu Y, Ye Q, Delzeit L and Meyyappan M, “A gas sensor array using carbon nanotubes and microfabrication technology”, ElectroChem. Solid St. 8, H100 (2005)
    39. Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ and Lai HJ, “A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature”, Sensor Actuat. B Chem. 101, 81-89 (2004)
    40. Ghosh S, Sood AK and Kumar N, “Carbon nanotube flow sensors”, Science 299, 1042-1044 (2003)
    41. Ghosh S, Sood AK, Ramaswamy S and Kumar N, “Flow-induced voltage and current generation in carbon nanotubes”, Phys. Rev. B 70, 205423-1-5 (2004)
    42. Ghosh S, Gadagkar V and Sood AK, “Strains induced in carbon nanotubes due to the presence of ions: Ab initio restricted Hatree–Fock calculations”, Chem. Phys. Lett. 406, 10-14 (2005)
    43. Zhao J, Buldum A, Han J and Lu JP, “Gas molecule adsorption in carbon nanotubes and nanotube bundles”, Nanotechnology 13, 195-200 (2002)
    44. Na PS, Kim H, So HM, Kong KJ, Chang H, Ryu BH, Kim BK, Kim JJ and Kim J, “Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors”, Appl. Phys. Lett. 87, 093101-1-3 (2005)
    45. Shintani K and Narita T, “Atomistic study of strain dependence of Poisson’s ratio of single-walled carbon nanotube”, Surf. Sci. 532-535, 862-868 (2003)
    46. Mylvaganam K and Zhang LC, “Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes”, Carbon 42, 2025-2032 (2004)
    47. Natsuki T and Endo MS, “Stress simulation of carbon nanotubes in tension and compression”, Carbon 42, 2147-2151 (2004)
    48. Yang L and Han J, “Electronic structure of deformed carbon nanotubes”, Phys. Rev. Lett. 85, 154-157 (2000)
    49. Liu B, Jiang H, Johnson HT and Huang Y, “The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes”, J. Mech. Phys. Solids 52, 1-26 (2004)
    50. Minot ED, Yaish Y, Sazonova V, Park JY, Brink M and McEuen PL, “Tuning carbon nanotube band gaps with strain”, Phys. Rev. Lett. 90, 156401-1-4 (2003)
    51. Umeno Y, Kitamura T and Kushima A, “Metallic–semiconducting transition of single-walled carbon nanotubes under high axial strain”, Compos Mater Sci 31, 33-41 (2004)
    52. Dohn S, Kjelstrup-Hansen J, Madsen DN, Mølhave K and Bøggild P, “Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain”, Ultramicroscopy 105, 209-214 (2005)
    53. Tombler TW, Zhou C, Alexseyev L, Kong J, Dai H, Liu L, Jayanthi CS, Tang M and Wu SY, “Reversible electromechanical characteristics of carbon nanotubes under local probe manipulation”, Nature 405, 769-772 (2000)
    54. Stampfer C, Helbling T, Obergfell D, Scho1berle B, Tripp MK, Jungen A, Roth S, Bright VM and Hierold C, “Fabrication of single-walled carbon-nanotube-based pressure sensors”, Nano Letters 6, 233-237 (2006)
    55. Grow RJ, Wang Q, Cao J, Wang D and Dai H, “Piezoresistance of carbon nanotubes on deformable thin-film membranes”, Appl. Phys. Lett. 86, 093104-1-3 (2005)
    56. Gao Y and Bando Y, “Carbon nanothermometer containing gallium”, Nature 415, 599-600 (2002)
    57. Arai F, Ng C, Liu P, Dong, Imaizumi Y, Maeda K, Maruyama H, Ichikawa A and Fukuda T, “Ultra-small site temperature sensing by carbon nanotube thermal probes”, 2004 4th IEEE Conference on Nanotechnology, 146-148 (2004)
    58. Fung C KM and Li WJ, “Ultra-low-power polymer thin film encapsulated carbon nanotube thermal sensors”, 2004 4th IEEE Conference on Nanotechnology, 158-160 (2004)
    59. Ye X, Sun DY and Gong XG, “Pressure-induced structural transition of double-walled carbon nanotubes”, Phys. Rev. B 72, 035454-1-5 (2005)
    60. Ye X, Sun DY and Gong XG, “Molecular dynamics study of radial pressure transmission in multiwalled carbon nanotubes”, Phys. Rev. B 75, 073406-1-4 (2007)
    61. Sun DY, Shu DJ, Ji M, Liu ZF, Wang M and Gong XG, “Pressure-induced hard-to-soft transition of single carbon nanotube”, Phys. Rev. B 70, 165417-1-5 (2004)
    62. Tang J, Qin LC, Sasaki T, Yudasaka M, Matsushita A and Iijima S, “Compressibility and polygonization of single-walled carbon nanotubes under hydrostatic pressure”, Phys. Rev. Lett. 85, 1887-1889 (2000)
    63. Chan SP, Yim WL, Gong XG and Liu ZF, “Carbon nanotube bundles under high pressure: Transformation to low-symmetry structures”, Phys. Rev. B 68, 075404-1-7 (2003)
    64. Zhang XH, Sun DY, Liu ZF and Gong XG, “Pressure-induced hard-to-soft transition of single carbon nanotube”, Phys. Rev. B 70, 165417-1-5 (2004)
    65. Bozhko AD, Sklovsky DE, Nalimova VA, Rinzler AG, Smalley RE and Fischer JE, “Resistance vs. pressure of single-wall carbon nanotube”, Appl. Phys. A 67, 75-77 (1998)
    66. Chen F, Xue YY, Chu CW, Stokes KL and Wang H, “Transport properties for carbon nanotubes under hydrostatic pressure”, Nanotech 1, 144-147 (2003)
    67. Tang J, Qin LC, Sasaki T, Yudasaka M, Matsushita A and Iijima S, “Revealing properties of single-walled carbon nanotubes under high pressure”, J. Phys.: Condens. Matter. 14, 10575–10578 (2002)
    68. Saito Y, Uemura S and Hamaguchi K, “Cathode ray tube lighting elements with carbon nanotube field emitters”, Jpn. J. Appl. Phys. 2, L346-L348 (1998)
    69. Park SJ, Taton TA and Mirkin CA, “Array-based electrical detection of DNA with nanoparticle probes”, Science 295, 1503-1506 (2002)
    70. Pnocharal P, Wang ZL, Ugarte D and Heer WA, “Electrostatic deflections and electromechanical resonances of carbon nanotubes”, Science 283, 1513-1516 (1999)
    71. Akamatsu K and Deki S, “Dispersion of gold nanoparticles into a nylon 11 thin film during heat treatment: in situ optical transmission study”, J. Mater. Chem. 8, 637-640 (1998)
    72. Deki S, Sayo K, Fujita T, Yamada A and Hayashi S, “Dispersion of nano-sized gold particles into polymers: dependence on terminal groups of polymers and morphology of vapor-deposited gold”, J. Mater. Chem. 9, 943-948 (1999)
    73. Chung SH, Wang Y, Persi L, Croce F, Greenbauma SG, Scrosatib B and Plichta E, “Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides”, J. Power Sources. 97-98, 644-648 (2001)
    74. Oh ST, Sando M, Sekion T and Niihara K, “Processing and properties of copper dispersed alumina matrix nanocomposites”, Nanostruct. Mater. 10, 267-272 (1998)
    75. Lu CH, Hong HC and Jagannathan R, “Sol-gel synthesis and photoluminscent properties of cerium-ion doped yttrium aluminium garnet powders”, J Mater. Chem. 12, 2525-2530 (2002)
    76. Binning G, Rohrer H, Gerber CH and Weibel E, “Surface studies by scaning tunneling mircoscopy”, Phys. Rev. Lett. 49, 57-61 (1982)
    77. Binning G and Rohrer H, “Scaning tunneling mircoscopy”, Surf. Sci. 126, 236-244 (1983)
    78. Binning G, Quate CF and Gerber CH, “Atomic force microscope”, Phys. Rev. Lett. 56, 930-933 (1986)
    79. Allen MP and Tildesley DJ, Computer simulation in chemical physics, Kluwer Academic, Dordrecht (1993)
    80. Meyer M and Pontikis V, Computer simulation in materials science: interatomic potentials, simulation techniques, and applications, Kluwer Academic, Dordrecht (1991)
    81. Erkoc S, Annual reviews of computational IX, World Scientific Publishing Company, Singapore, 1-103 (2001)
    82. Rafii-Tabar H, “Modelling the nano-scale phenomena in condensed matter physics via computer-Based numerical simulations”, Physics Reports 325, 239-310 (2000)
    83. Smith R, Atomic & ion collisions in solids and at surfaces, Cambridge University Press, London (1997)
    84. Maitland GC, Rigby M, Smith EB and Wakeham WA, Intermolecular forces, Oxford University Press, London (1987)
    85. Huyskens PL, Luck WAP and Zeegers-Huyskens T, Intermolecular forces: an introduction to modern methods and results, Springer-Verlag, Berlin (1991)
    86. Rigby M, Smith EB, Wakeham WA and Maitland GC, The forces between molecules, Oxford University Press, London (1986)
    87. Tersoff J, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Phys. Rev. B 39, 5566-5568 (1989)
    88. Tersoff J, “Empircal interatomic potential for carbon, with applications to amorphous carbon”, Phys. Rev. Lett. 61, 2879-2882 (1988)
    89. Haile JM, Molecular dynamics simulation: elementary methods, John Wiley & Sons, New York (1997)
    90. Rapaport DC, The art of molecular dynamics simulation, Cambridge University Press, London (1997)
    91. Goodfellow JM, Molecular dynamics: applications in molecular biology, CRC Press, Boston (1990)
    92. Allen MP and Tildesley DJ, Computer simulation of liquids, Oxford Science, London (1991)
    93. Frenkel D and Smit B, Understanding molecular simulation, Academic Press, San Diego (1996)
    94. Heermann DW, Computer simulation method, Springer-Verlag, Berlin (1990)
    95. Slater JC and Koster GF, “Simplified LCAO method for periodic potential problem”, Phys. Rev. 94, 1498-1524 (1954)
    96. Kittle C, Introduction to solid state physics, John Wiley and Sons, New York (1996)
    97. 劉東昇編譯,化學量子力學。徐氏基金會出版,台北 (1992)
    98. 江元生,結構化學。五南圖書出版,台北 (1998)
    99. Colombo L, “A source code for tight-binding molecular dynamics simulation”, Comp. Mater. Sci. 12, 278-287 (1998)
    100. Park JY, Rosenblatt S, Yaish Y, Sazonova V, Ustunel H, Braig S, Arias TA, Brouwer PW and McEuen PL, “Electron-phonon scattering in metallic single-walled carbon nanotubes”, Nano Letter 4, 517-520 (2004).
    101. Harrison WA, Electronic structure and the properties of solids, Dover publications Inc., New York (1988)
    102. Berendsen HJC, Postma JPM, Gunsteren WFV, Dinla A and Haak JR, “Molecular dynamics with coupling to an external bath”, J. Chem. Phys. 81, 3684-3690 (1984)
    103. Ehrhart P, Jung P, Schultz H and Ullmaier H, “Atomic defects in metal”, Landolt-Börnstein, New Series, Group III, Vol. 25, Springer-Verlag, Berlin, 1-87 (1991)
    104. Sun DY and Gong XG, “A new constant-pressure molecular dynamics method to finite systems”, J. Phys.: Condens. Matter 14, L487-L493 (2002)
    105. Baltazar SE, Romero AH, Rodriguez-Lopez JL, Terrones H and Martonak R, “Assessment of isobaric-isothermal (NPT) simulations for finite systems”, Comp. Mater. Sci. 37, 526-536 (2006)
    106. Cardona M and Pollak FH, Physics of optoelectronic materials, Plenum Pub. Co, New York (1972)
    107. Grosso G and Parravicini GP, Solid state physics, Academic., New York 1-35 (2000)
    108. Mujica V, Kemp M and Ratner MA, “Electron conduction in molecular wires. I. A scattering formalism”, J. Chem. Phys. 101, 6849-6855 (1994)
    109. Li XQ and Yan YJ, “Electrical transport through individual DNA molecules”, Appl. Phys. Lett. 79, 2190-2192 (2001)
    110. Zwolak M and Ventra MD, “DNA spintronics”, Appl. Phys. Lett. 81, 925-927 (2002)
    111. Dobrokhotov VV and Berven CA, “Band structure changes of single-wall carbon nanotubes by the presence of an ionic shell”, Physica E: Low-dimensional Systems and Nanostructures 31, 160-164 (2006)
    112. Dharap P, Li ZL, Nagarajaiah S and Barrera EV, “Nanotube film based on single-wall carbon nanotubes for strain sensing”, Nanotechnology 15, 379-382 (2004)
    113. Ahn KH, Kim YH, Wiersig J and Chang KJ, “Spectral correlation in incommensurate multiwalled carbon nanotubes”, Appl. Phys. Lett. 90, 026601-1-4 (2003)
    114. Chen J and Yang L, “Unique effects of incommensurability on transport properties of incommensurate double-walled carbon nanotubes”, J. Phys.: Condens. Matter. 17, 957-963 (2005)
    115. Chen J, Wang X, Leng S and Yang Z, “Effects of intertube interaction on the linear optical properties of the double-walled carbon nanotubes”, Phys. Lett. A 351, 105-108 (2006)
    116. Porter LJ, Yip S, Yamaguchi M, Kaburaki H and Tang M, “Empirical bond-order potential description of thermodynamic properties of crystalline silicon”, J. Appl. Phys. 81, 96-106 (1997)
    117. Wu J, Zang J, Larade B, Guo H, Gong XG and Liu F, “Computational design of carbon nanotube electromechanical pressure sensors”, Phys. Rev. B 69, 153406-1-4 (2004)

    下載圖示 校內:2010-07-17公開
    校外:2010-07-17公開
    QR CODE