簡易檢索 / 詳目顯示

研究生: 廖南華
Liao, Nan-Hwa
論文名稱: 土壤經驗參數於數值分析之應用
Assessment of Empirical Soil Properties and its Applications in Performance Analysis
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 181
中文關鍵詞: 數值分析膨脹角土壤性質常數
外文關鍵詞: numerical analysis, dilation angle, soil properties
相關次數: 點閱:88下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   過去對於大地工程問題的數值分析,在輸入參數的決定上缺少一個實用的參考依據,而工程上對於實際案例的分析,為求簡化問題,參數的決定亦往往過於粗糙。因此,本研究的主要研究目的在於彙整並評估土壤及岩石各項參數的經驗公式及建議值,並討論其對於一般大地工程問題方面的數值分析的影響,期能透過一個簡易求得輸入參數的系統,以有效模擬現地發生的工程問題及災害情形。

      本研究首先針對各項參數就以往文獻的經驗資料作一彙整的工作,此工作著重於土壤強度參數的經驗公式(楊氏模數、剪力模數),所有的經驗資料依不同的試驗種類及適用土壤型態作區分,並提供初步使用的建議。另外,本研究亦藉由三軸試驗結果,來討論粒狀土壤的膨脹行為對於工程問題的影響。

    為針對上述彙整及試驗的工作結果做一評估,本研究運用PLAXIS有限元素分析方法,進行三個實際案例分析,包括邊坡、深開挖及碼頭的工程行為分析;數值模擬的結果顯示,與實際上工程常用的分析方法及常用的應用軟體比較,本研究所建議選取適當的土層經驗公式可以得到較佳的分析結果。

    This research was an effort to evaluate the influence of empirical soil properties in geotechnical analysis. Empirical equations and suggested values from previous literatures were synthesized. The main purpose of this task focused on the strength properties like Young’s modulus and shear modulus of soils and rocks. All empirical data were synthesized according to different field and laboratory tests and various soil types. Recommendations based on the experience of the synthesis work were outlined for preliminary determination of appropriate empirical parameters.

    Dilative behavior of granular was seldom considered in engineering practice. Besides, less research were carried out to investigate dilation angle of granular soils at low confining pressure range. Therefore, in this research, triaxial tests were performed on several types of sand in Taiwan. Test results were obtained to compare with previous research. Suggested values of dilation angle of different granular soils based on analysis results were then indicated.

    Three in situ cases were introduced to evaluate empirical soil information described above. A finite element method based computer program PLAXIS were also applied to case studies. Compared to general engineering analysis methods, this research performed better analysis results with the consideration of appropriate empirical soil properties. Recommendations were also established for further seismic analysis.

    摘 要 I Abstract II 誌 謝 III Table of Content IV List of Tables VII List of Figures IX Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Overview 2 1.3 Thesis Organization 3 Chapter 2 Literature Review 5 2.1 Engineering Soil Properties 5 2.2 Dilative Behavior of Granular Material 7 2.2.1. Concepts of dilatancy 7 2.3 The Finite Element Method 13 2.3.1 Analysis Procedure of the Finite Element Method 14 2.4 Summary 16 2.4.1 Problems of Present Geotechnical Numerical Analysis 16 2.4.2 Research Needs for Present Problems 16 Chapter 3 Scope of Work 17 3.1 Establishment of a Practical System for Empirical Soil Properties 17 3.2 Investigation of the Dilative Behavior of Granular Soils in relation to Strength Parameters for Design 17 3.3 Development of Modeling Methods for In Situ Case Studies of Geotechnical Problems 18 3.4 Parametric Study on Empirical Soil Properties and Dilation Angles 19 3.4.1 Calibrate the Modeling Techniques 19 3.4.2 Influence of Different Empirical Soil Properties and Dilation Angles 19 3.5 Assessment of Dynamic Strength Properties of Soil and Recommendations for Further Dynamic Analysis 20 Chapter 4 Empirical Equations and Suggested Values of Soil and Rock Properties 21 4.1 Introduction 21 4.2 Soil Properties 22 4.2.1 Index Properties 23 4.2.2 Strength Properties 31 4.3 Rock Properties 59 4.3.1 Index Properties 60 4.3.2 Strength Properties 64 4.4 Recommendations 75 Chapter 5 Material and Experimental Program 78 5.1 Material Properties and Equipment 79 5.1.1 Description of Testing Soils 79 5.1.2 Equipment 82 5.2 Test Program 84 5.2.1 Test procedure 84 5.3 Test Results and Analysis 87 5.3.1 Test Results 87 5.3.2 Summary 93 Chpter 6 Developing Numerical Models Using Computer Program PLAXIS 95 6.1 General Description of PLAXIS 95 6.2 Case Studies 97 6.2.1 The Improvement of the Section 57K+468 to 60K+268 of the Taiwan No. 2 Provincial Highway of the Western Coastal Expressway 97 6.2.2 King-Hansin Plaza 110 6.2.3 Wharf No.2 of Taichung Port 127 Chapter 7 Assessment and Discussion of Modeling Results 135 7.1 Introduction 135 7.2 Analysis Results 135 7.2.1 The Section 57K+468 to 60K+268 of the Taiwan No. 2 Provincial Highway of the Western Coastal Expressway 135 7.2.2 King Hansin Plaza 144 7.2.3 Wharf No.2 of Taichung Port 161 7.3 Discussion and Recommendation 171 7.3.1 The Section 57K+468 to 60K+268 of the Taiwan No. 2 Provincial Highway of the Western Coastal Expressway 171 7.3.2 King Hansin Plaza 172 7.3.3 Wharf No.2 of Taichung Port 174 Chapter 8 Conclusions 175 8.1 Conclusions 175 8.1.1 Synthesis Work and Laboratory Tests 175 8.1.2 Performance Modeling of Geotechnical Cases 176 8.2 Recommendations for Future Research 177 References 178

    1. 李延恭,「台灣各港區地質調查分析與資料建檔之研究」,交通部運輸研究所港灣技術研究中心,基本研究09號,(1984)
    2. 莊琇茵,「碼頭基礎液化防治方法之研議」,國立成功大學土木工程研究所碩士論文,(2001)
    3. 富國技術工程股份有限公司,「金阪神巨星廣場基礎施工安全觀測系統工作報告書」,(1995)
    4. 黃國祥,「滑動塊體分析法及其應用在港灣重力式擋土牆之研究」,國立台灣大學土木工程研究所博士論文,(2002)
    5. 德陽大地土木技師事務所,「西濱公路台二線57K+468~60K+268段改善工程人工安全監測系統設置設計圖」,交通部公路總局西部濱海公路北區工程處,(2002)
    6. ASCE, “Rock Foundations”, Technical Engineering and Design Guides as Adapted from the US Army Corps of Engineers, No.16, pp.26~28, (1996)
    7. Atkinson, J. H., “An Introduction to the Mechanics of Soils and Foundations”, McGraw-Hill, (1993)
    8. Barden, L., Ismail, H., and Tong, P., “Plane Strain Deformation of Granular Material at Low and High Pressure”, Geotechnique, Vol. 19, No. 4, pp.441~452, (1969)
    9. Bolton, M. D., “The Strength and Dilatancy of Sands”, Geotechnique, Vol. 36, No. 1, pp.65~78, (1986)
    10. Bolton, M. D., “Closure to Discussion: The Strength and Dilatancy of Sands”, Geotechnique, Vol. 37, No. 2, pp.219~226, (1986)
    11. Bowles, J. E., “Foundation Analysis and Design”, McGraw-Hill, (1996)
    12. Bowles, J. E., “Physical and Geotechnical Properties of Soils”, McGraw-Hill, (1984)
    13. Budhu, M., “Soil Mechanics and Foundations”, Wiley, pp.84~89, (2000)
    14. Cernica, J. N., “Geotechnical Engineering : Soil Mechanics”, Wiley, pp.241~242, (1995)
    15. Chan, C. K., “Low-Friction Seal System”, Journal of Geotechnical Engineering Division, ASCE, Vol. 101, No. GT9, pp.991~995, (1975)
    16. Chan, C. K., and Mulilis J. P., “Pneumatic Sinusoidal Loading System”, Journal of Geotechnical Engineering Division, ASCE, Vol. 102, No. GT3, pp.277~282, (1976)
    17. Coduto, D. P., “Foundation Design : Principles and Practices”, Prentice-Hall, pp.502,602, (1994)
    18. Cook, R. D., “Finite element Modeling for Stress Analysis”, John Wiley & Sons, Inc, pp.1~13, (1995)
    19. Das, B. M., “Advanced Soil Mechanics”, Hemisphere Publishing Corporaiton, pp.359~361,406, (1983)
    20. Das, B. M., “Principle of Foundation Engineering”, PWS Publishing Company, (1990)
    21. Das, B. M., “Principle of Geotechnical Engineering”, PWS Publishing Company, (1998)
    22. Das, B. M., “Principles of Soil Dynamics”, PWS Publishing Company, (1993)
    23. Duncan, C. I., “Soils and Foundations for Architects and Engineers”, Van Nostrand Reinhold, pp.35, (1992)
    24. Fang, H. Y., “Foundation Engineering Handbook”, Van Nostrand Reinhold, pp.133~136,181,540,546, (1991)
    25. Goodman, R. E., “Introduction to Rock Mechanics”, John Wiley & Sons, Inc, (1989)
    26. Hausmann, M. R., “Engineering Principles of Ground Modification”, McGraw-Hill, pp.62~63,92~109, (1990)
    27. Holtz, R. D., and Kovacs, W. D., “An Introduction to Geotechnical Engineering”, Prentice-Hall, pp.210,341, (1981)
    28. Kramer, S. L., “Geotechnical Earthquake Engineering”, Prentice-Hall, pp.230~240, (1996)
    29. Lai, J. Y., “Seismic Resistant Design of Wharf Structures”, Center of Harbor and Marine Technology, IOT serial number 91-8-707, (2001)
    30. Lambrechts, J. R., Hwang R., Alfredo Urzua, “Big Digs Around the World”, ASCE, (1998)
    31. Lee, W. F., “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls”, Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000)
    32. Lee, Y. K., “Engineering Characteristics of Soil at Taichung Harbor Area”, Journal of Harbour Technology, Vol.14 pp.47~70, (1999)
    33. Mitchell, J. K., “Fundamentals of Soil Behavior”, Wiley, pp.270, (1976)
    34. Rowe, R. K., “Geotechnical and Geoenvironmental Engineering Handbook”, Kluwer Academic, pp.55~56, (2001)
    35. Su, G. L., and Lee Y. K., “Investigations on the Damaged North Wharf of Taichung Harbor after the 921, Chi-Chi Earthquake”, Sino-Geotechnics, No.77, pp.65~76, (2000)
    36. Tatsuoka, F., Sakamoto, M., Kawamura, T., and Fukushima, S., “Strength and Deformation Characteristics of Sand in Plane Strain Compression at Extremely Low Pressures”, Soils and Foundations, Vol. 26, No. 1, pp.65~84, (1986a)
    37. Terzaghi, K., and Peck, R. B., “Soil Mechanics in Engineering Practice”, Wiley, pp.29, (1968)
    38. Vermeer, P. A., and de Borst, R., “Non-Associated Plasticity for Soils, Concrete and Rock”, Heron, Vol. 29, No. 3, pp.1~64, (1984)
    39. Waltham, A. C., “Foundations of Engineering Geology”, Blackie Acedemic & Professional, pp.48~49, (1994)

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE