簡易檢索 / 詳目顯示

研究生: 黃奕樵
Huang, I-Chiao
論文名稱: 微分再生核近似法於裂縫應力強度因子之應用
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 79
中文關鍵詞: 應力強度因子裂縫微分再生核近似法無元素法
外文關鍵詞: crack, stress intensity factor, meshless method, DRKM
相關次數: 點閱:127下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要利用微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM) 以及在位移函數中加入之應力奇異性項次,計算二維含裂縫平板之位移及應力場,並利用應力奇異性項次計算裂縫尖端之應力強度因子。文中,說明在所有點離散點加入應力奇異性項次只能適用於邊緣或是單一裂縫;所以若只在裂縫尖端點附近之離散點加入應力奇異性項次,並利用連續條件與未加入奇異性項次的離散點做一連接,此方法可以適用於邊緣、中央或是兩個以上之裂縫。
      在數值算例中,求解不同裂縫情形,包括邊緣水平裂縫、邊緣傾斜裂縫、中央水平裂縫、中央傾斜裂縫以及邊緣雙裂縫等問題,並說明如何佈點才能求得較佳精度之應力強度因子。

    none

    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 第一章 緒論 1 1-1前言 1 1-2無元素法的發展與文獻回顧 2 1-3本文架構 4 第二章 理論基礎 6 2-1離散的再生核近似 6 2-2再生核形狀函數的微分 8 2-3 加權函數與鄰近點的選取 10 2-4 應力奇異性項次 12 第三章 微分再生核近似法之應用 17 3-1二維平板控制方程式 17 3-2 邊界條件 19 3-2-1 自由端 19 3-2-2 輥支承 21 3-2-3 固定端 21 3-3 應力強度因子 22 3-4局部區域加入奇異性項次 28 第四章 數值算例 32 4-1水平邊緣裂縫 32 4-1-1所有點均加入應力奇異性項次 33 4-1-2只有裂縫尖端點附近加入應力奇異性項次 34 4-2傾斜邊緣裂縫 36 4-3水平邊緣雙裂縫 37 4-4中央水平裂縫 38 4-5中央傾斜裂縫 39 第五章 結論 40 參考文獻 66 附錄1 69 附錄2 76

    Aliabadi M. H., Rooke D.P. and Cartwright D.J., Mixed-mode Buckner weight functions using boundary element analysis, International Journal of Fracture 34, 131-147, 1987.

    Belytschko T., Gu L. and Lu Y. Y., Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2, 519-534, 1994.

    Belytschko T., Gu L. and Lu Y. Y., Element-free Galerkin methods, Int. J. Numer. Meth. Engng 37, 229-256 ,1994.

    Belytschko T., Lu Y. Y. and Gu L., Crack propagation by element-free Galerkin methods, Engng. Frac. Mech. 51(2), 295-315, 1995.

    Belytschko T., Organ D.,Krongauz Y., A coupled finite element- element-free Galerkin methods, Computational Mechanics(17) , 186-195 , 1995.

    Belytschko T., Fleming M., Smoothing, enrichment and contact in the element free Galerkin method, Computers and Structures(71), 173-195, 1999.

    Chen J. S., Wu C. T. and Liu W. K., Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures, Computer Method in Applied Mechanics And Engineering. 139, 195-227, 1996.

    Eshelby J.D., Read ,W. T.,Shockley W., Anisotropic elasticity with applications to dislocation theory, Acta Metall.(1), 251-259, 1953.

    Fleming M., Chu Y.A., Moran And B.,Belytschko T., Enriched element-free Galerkin methods for crack tip fields, Int. J. Number. Methods Engrg.(40), 1483-1504, 1997.

    Griffith A.A., The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London A221, 163-198, 1924.

    Irwin G.R., Analysis of stress and strains near the end of a crack traversing a plate, Journal of Applied Mechanics(24), 361-364, 1957.

    Lucy L.B., A numerical approach to the testing of the fission hypothesis, The Astron.J.8(12), 1013-1024, 1977.

    Lu Y. Y., Belytschko T., Gu L., A new implementation of element-free Galerkin methods, Comp. Meth. Appl. Mech. Engng 113, 397-414, 1994.

    Libersky L.D., Petschek A.G., Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics, International Journal of Impact Engineering(17), 661, 1995

    Liu W. K., Jun S. and Zhang Y. F., Reproducing kernel particle methods, Int.J. Number. Methods Engrg.20, 1081-1106, 1995.

    Li s., Hao W., Liu W. K., Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102-116, 2000.

    Nalroles B., Touzot G. and Villon P., Generalizing the finite element method diffuse approximation and diffuse element, Comput. Mech. 10, 307-318, 1992.

    Rice J.R., A path independent integral and approximate analysis of stain concentration by notches and cracks, Journal of Applied Mechanics(36), 379-386, 1968.

    Ting T. C. T., Explicit solution and invariance of the singularities at an interface crack in anisotropic composites, Int. J. Solids Structures(22), 965-983, 1986.

    Ting T. C. T., Anisotropic elasticity: theory and applications, Oxford Univ.Press., New York, 1996.

    Tada H., Paris P. C. and Irwin G. R.: The Stress Analysis of Cracks Handbook, Third Edition, 2000.

    Williams M. L., Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension, Transactions of the ASME, Journal of Applied Mechanics, Vol.74, 526-528, 1952.

    盛若磐,"元素釋放法積分法則與權函數之改良" ,近代工程計算論(2000)論文集,國立中央大學土木系,2000.

    盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論
    (2000) 論文集,國立中央大學土木系,2000.

    下載圖示 校內:立即公開
    校外:2004-07-09公開
    QR CODE