| 研究生: |
楊秉豐 Yang, Ping-Feng |
|---|---|
| 論文名稱: |
奈米薄膜之微觀特性研究 The Study on Microscopic Characteristic for Nano-scale Thin Films |
| 指導教授: |
陳榮盛
Chen, Rong-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 195 |
| 中文關鍵詞: | 介金屬化合物 、氧化鋅 、氮化銦鎵 、氮化鋁 、單晶矽 、奈米壓痕與刮痕 、分子動力學 |
| 外文關鍵詞: | Intermetallic compounds, ZnO, InGaN, AlN, Single silicon, Nanoindentation and nanoscratch, Molecular dynamic |
| 相關次數: | 點閱:88 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子產業自1970年代左右創立,至今所帶來電子產品的迅速發展,包括IC設計、製造、封裝與測試等電子產業,讓台灣躍居全球電子產業重鎮的地位。然這些半導體產業中所使用之材料相當多元化,包括電子構裝銲錫接點之介金屬化合物,與II-VI族、III-V族與IV族等不同半導體材料。以往有關介金屬化合物之研究多專注於銲錫材料熱擴散反應及溫度循環與掉落衝擊及高速撞擊銲錫等之可靠度測試,並對介金屬化合物之生成機制及電子產品之使用壽命提供具體之陳述。但因介金屬層極薄及試片不易製備,使得在奈米等級機械性質之探討並不多見,且其磨耗特性之討論亦相當缺乏。
其次,對II-VI族材料之氧化鋅薄膜、III-V族之氮化銦鎵及氮化鋁薄膜與IV族之單晶矽等半導體材料之研究,過去多強調於結構、光電、聲波、壓電、導電及半導體等特性運用。然這些材料所開發之產品,在長時間運作下其結構內接合處存在機械與磨耗的問題,將導致使用壽命縮短。惟針對這些材料在接觸行為下所產生問題之研究極為缺乏。再者,選擇材料之同時不僅須對其相關本質特性有所認知,因應產品運用微小化趨勢,對於前期試片製備與細部奈米尺度之研究亦須投入更多之心力。
首先,本文以退火擴散偶方式製備介金屬化合物,並以等溫150oC下持續約1000小時製作奈米壓痕之試片,而因奈米刮痕所需體積空間更大,則以溫度150oC需持續約1500小時之環境下製備。接著進行微結構觀察,可發現Ni3Sn4柱為柱狀結構且晶粒最大,而Cu3Sn與較粗大之六角形狀Cu6Sn5較細小且鬆散。經過奈米壓痕實驗後,發現壓痕方向不論垂直或側向所對應之機械性質差異不大,而獲得之楊氏模數Cu6Sn5約116 GPa左右、Cu3Sn為132 GPa左右及Ni3Sn4為140 GPa左右,而所對應之硬度值,Cu6Sn5、Cu3Sn及Ni3Sn4皆極為接近約6.3 GPa左右。並發現Cu6Sn5在低應變率之奈米壓痕過程中產生多重pop-in偏移現象,且臨界應變率範圍為0.1 s-1到0.05 s-1,然在相同條件下之Cu3Sn及Ni3Sn4卻無此種效應。其次,觀察刮痕實驗後所獲得外觀結構,發現Ni3Sn4之隆起效應較大,而Sn-Cu組成之介金屬化合物較小。其結果顯示在10至30 mN正向力及0.1至10 mm/s刮痕速率組合之刮痕試驗條件下,Cu6Sn5、Cu3Sn與Ni3Sn4介金屬相之摩擦係數分別介於0.178~0.287、0.175~0.296與0.197~0.310之間,故Ni3Sn4的磨耗較Cu6Sn5及Cu3Sn顯著,而且正向力與磨耗特性密切相關,但刮痕速率與磨耗特性之間的關係並不顯著。
其次,針對II-VI族材料為氧化鋅薄膜、III-V族為氮化銦鎵及氮化鋁薄膜與IV族為單晶矽等半導體材料之製備原理與方法作詳細介紹。分別以射頻磁控濺鍍方式以製備氧化鋅及氮化鋁薄膜,並利用有機金屬化學氣相沉積之技術成長氮化銦鎵薄膜,對於薄膜長晶方向和品質、表面形貌與粗糙度、奈米等級之機械、磨耗性質與微結構受壓痕與刮痕力後之外觀和相變行為,分別利用X光繞射分析儀、微Raman光譜分析儀、奈米壓痕與刮痕實驗技術、掃描式電子顯微鏡、聚焦式離子束顯微鏡和橫切面穿透式電子顯微鏡等高解析度設備進行觀察,其結果如後:
氧化鋅薄膜之濺鍍時間分別為一、二與三小時,其結構將隨濺鍍時間增長而朝c軸(002)晶格方向成長,而表面粗糙度降低,且楊氏模數分別為135.4 ± 6.4、147.3 ± 4.5和157.9 ± 2.8 GPa,而硬度分別為9.2 ± 0.8、9.4 ± 2.8和10.4 ± 0.4 GPa。再者,由聲波特性觀察此薄膜沉積於藍克賽基板,將提高表面聲波之速率與增加壓電耦合之效率。
氮化銦鎵薄膜之成長溫度控制於790oC、760oC或730oC以製備銦含量分別為25%、30%及34%,得知較低銦含量的氮化銦鎵薄膜在較高的成長溫度下生成,且所對應之晶粒尺寸分別約為9.92 nm、9.84 nm及8.62 nm,顯示晶粒大小隨銦含量增加而減少,且表面粗糙度亦有此趨勢。其次,對In0.25Ga0.75N,、In0.3Ga0.7N及In0.34Ga0.66N薄膜所獲得之機械性質,亦發現硬度特性將隨較高之銦含量而呈現較低之硬度,然銦含量對薄膜楊氏模數的影響並無特定趨勢存在。
氮化鋁薄膜分別以150W、250W和350W之功率濺鍍生成,發現結構(103)晶格方向隨濺鍍功率增大而愈明顯,其機械性質顯示供給較高射頻功率具有較高的硬度與楊氏模數,此因結晶表面之粗糙度隨著供給功率提高而更平整,導致較密緻之結構。再者,在刮痕實驗所獲得每組試片的摩擦係數皆會微幅地隨正向力增加而提高,而不同射頻功率所對應薄膜的摩擦係數的值是接近的,尤其是350W功率下之生成薄膜,可發現其摩擦係數在整個刮痕實驗中具有最穩定與最小變異數。
最後,在單晶矽半導體材料之實驗過程中,楊氏模數以及硬度一開始隨壓印深度增加而增加,而後逐漸收斂至常數。壓痕實驗後以微拉曼光譜觀察在壓痕附近產生Si-III和Si-XII之混合相,接著,以穿透式電子顯微鏡觀察顯微影像發現接近壓痕中心裂縫位置係因應力較大而形成Si-III以及Si-XII混合相。其次,有關單晶矽相變行為之驗證,乃利用分子動力學模擬法則進行,即選擇適合之二體與多體勢能勢能函數執行模擬分析,發現奈米壓痕之卸載階段所產生之高壓相與Si-II相會轉換成Si-III相與Si-XII相,若呈現pop-out現象則伴隨著Si-III與Si-XII相與非晶質相共同產生。若出現elbow現象,則使得Si-II相轉變為非結晶相,此結論與壓痕實驗之結果互相驗證,且最重要的是利用模擬技術可補足實驗過程中所無法及時觀察之粒子受力狀況與局部變形行為,可供往後相關研究之重要參考。
Since the electronic industry was initiated in 1970, Taiwan has played an important role in the global market due to the rapid development of his electronic product, such as IC design, manufacture, package assembly, test etc. The materials applied by the semiconductor industries are quite diverse, which includes intermetallic comounds (IMCs) of solder joint of electronic packaging, II-VI, III-V and IV semiconductor materials. In the past, the research related to IMCs were concentrated on those reliability tests such as annealing diffusion couple of solder material and temperature cyclic test, drop impact and high speed impact on the solder. Meanwhile, the growth mechanism for IMCs and fatigue life for the electronic products are described in details. However, due to the IMC layers were quite thin and difficult to manufacture specimens, the researches on nanoscale mechanical properties were rare, and the discussions on tribological characteristic were insufficient as well.
Besides, in the past, the studies on ZnO thin film of II-VI material, InGaN and AlN thin films of III-V and the single silicon of IV have been emphasized on their characteristic applications, such as structure, electro-optical, acoustic wave, piezoelectric, conduct electricity, semiconductor etc. However, the products developed by these materials have gradually exhibited their mechanical and tribological problems on jointed location under long-time work, and these problems will result in a shorter operating life. Likewise, the researches related were also scarce in the past. Moreover, while the material is selected, not only the relatively essential characteristics should be well understood, but also the earlier specimen preparation and the detailed nanoscale research should be paid more attention to in accordance with the trend of slight products.
First, in this paper annealing diffusion couple was adopted to manufacture IMCs, in which the specimens for nanoindentation test were isothermally annealed at 150oC for 1000 h. With the requirement of space for the larger volume, the specimens for nanoscratch test were hence isothermally annealed at 150oC for 1500 h. After the micro-structural investigation, it is found that the grains of the bar-shaped Ni3Sn4 are the largest among all, while fine Cu3Sn grains and coarse hexagonal Cu6Sn5 grains are smaller and loosely packed. After the nanoindentation test, it is found that the mechanical properties of the three IMCs both in lateral and perpendicular indentations are almost identical, while corresponding Young’s moduli is about 116 GPa for Cu6Sn5, 132 GPa for Cu3Sn, and 140 GPa for Ni3Sn4. Hardness of the three IMCs are all approximate to 6.3 GPa. The multiple pop-ins are observed for Cu6Sn5 under low-strain-rate loads during the nanoindentation test, in which the threshold is around 0.1 s-1 to 0.05 s-1. However, such events are completely absent on the load-displacement curves for Cu3Sn and Ni3Sn4. Moreover, after the scratch test, it is observed that pile-up features of Ni3Sn4 become more apparent while those of Cu-Sn IMCs are unobvious. During the scratch test, a constant normal load of 10 to 30 mN and a scratch rate of 0.1 to 10 mm/s are applied. The corresponding coefficients of friction (COF) for Cu6Sn5, Cu3Sn, and Ni3Sn4 are 0.178 ~ 0.287, 0.175~0.296 and 0.197~0.310 respectively under different scratch test conditions. Therefore the wear properties of Ni3Sn4 are more obvious than those of Cu6Sn5 and Cu3Sn. In addition, the normal force is closely relative to tribological characteristics. Nevertheless, the scratch rate does not significantly affect on the tribological characteristics.
Furthermore, the fabricating theorem and methodology of ZnO thin film of II-VI material, InGaN and AlN thin films of III-V and the single silicon of IV were comprehensively introduced. In this study, the ZnO and AlN thin films were deposited through radio frequency (RF) magnetron sputtering, while InGaN thin films were deposited by a metal-organic chemical-vapor deposition system. Furthermore, X-ray diffraction analysis, Raman micro-spectroscopy, nanoindentor and nanoscratch technique, scanning electron microscope, dual-beam focused ion beam, cross-section transmission electron microscope (XTEM) are applied to investigate the crystal orientation and quality of the thin film, the surface morphology and roughness, the nanoscale characterization of mechanical and tribology, the structural appearance phase transformation after nanoindentation and nanoscratch behavior, respectively. The results are summarized as follows:
With the change of the deposition time from 1 to 2 to 3 h, the structure of ZnO thin films gradually magnifies with the grain orientation of c-axis (002), while the roughness decreases, and Young’s moduli are 135.4 ± 6.4, 147.3 ± 4.5 and 157.9 ± 2.8 GPa, corresponding hardness are 9.2 ± 0.8, 9.4 ± 2.8 and 10.4 ± 0.4 GPa, respectively. Furthermore, based on the acoustic wave properties, it is found that the coating of a ZnO thin film on Langasite will slightly enhances the surface acoustic wave velocity and improves the efficiency of the electromechanical coupling.
Moreover, the growth temperatures of 790oC, 760oC, and 730oC were given to obtain InGaN films with various In contents of 25 %, 30 %, and 34 %, respectively. It is found that lower In content is deposited at higher temperature, while corresponding grain sizes are approximate to 9.92 nm, 9.84 nm and 8.62 nm., respectively. It indicates that the grain size decreases with the increase of In contents, and so does the surface roughness. Next, from the mechanical properties of In0.25Ga0.75N, In0.3Ga0.7N, and In0.34Ga0.66N thin films, it is also found that a greater In content leads to a lower hardness. Nevertheless, there are no significant influences from In content.on Young’s moduli.
Afterwards, AlN thin films were prepared by setting the RF power at 150, 250, and 350 W. It is found that the intensity of the (103) peak increases as the RF power increases. By investigating the mechanical properties, it indicates a greater hardness and Young’s modulus of the (103) AlN thin film with a higher RF power since the surface roughness of the (103) AlN thin film decreases as the RF power increases so as to reach a more uniform crystalline grain. Furthermore, a greater normal load leads to a greater COF during the nanoscratch test. Though COFs of (103) AlN thin films appear to be similar regardless of the RF powers, thus the COF for the thin film deposited with 350 W is most stable and has the least experimental variation.
Eventually, during the nanoindentation measurement of IV single-crystal silicon, the Young’s modulus and hardness initially increase with the increase of the penetration depth, then gradually converge to constants. After indentation, micro-Raman spectra of residual impressions at indenting location are acquired Si-III and Si-XII mixed phases. Moreover, through XTEM, it is found from the micro images in which the indenting center nearby present a crystalline phases Si-III and Si-XII due to larger stress. Furthermore, the molecular dynamic (MD) simulation is conducted to verify the phase transformation, i.e., appropriate two-body and multi-body potentials are selected for simulation and analysis. It is found that high pressure phase and Si-II formed during the unloading stage will be transformed to Si-III and Si-XII phases. If pop-out event occures during the unloading stage, phase transformations will be changed from Si-II to Si-III or Si-XII and amorphous phases. Moreover, If elbow event appears, Si-II will be transformed to amorphous phase. These results can be mutually verified with the results obtained from the nanoindent test. Upmostly, the adoption of MD simulation technique is helpful to investigate the loading condition and the local deformed behavior which the particle fails to do immediately during the experiment process. All the results obtained in this paper could be valuable references for prospective researches.
1. Y.-S. Lai, P.-F. Yang and C.-L. Yeh, “Experimental studies of board-level reliability of chip-scale packages subjected to JEDEC drop test condition,” Microelectronics Reliability, Vol. 46, No. 2-4, pp. 645-650, 2006.
2. D. Y. R. Chong, F. X. Che, J. H. L. Pang, K. Ng, J. Y. R. Tan and P. T. H. Low, “Drop impact reliability testing for lead-free and lead-based soldered IC packages,” Microelectronics Reliability, Vol. 46, No. 7, pp. 1160-1171, 2006.
3. E. H. Wong, R. Rajoo, Y.-W. Mai, S. K. W. Seah, K. T. Tsai and L. M. Yap, “Drop impact: Fundamentals and impact characterisation of solder joints,” Proc. 55th Electronic Components and Technology Conference, Lake Buena Vista, FL, USA, pp. 1202-1209, 2005.
4. C.-L. Yeh and Y.-S. Lai, “Transient fracturing of solder joints subjected to displacement- controlled impact loads,” Microelectronics Reliability, Vol. 46, No. 5-6, pp. 885-895, 2006.
5. C.-L. Yeh and Y.-S. Lai, “Effects of solder alloy constitutive relationships on impact force responses of package-level solder joints under ball impact test,” Journal of Electronic Materials, Vol. 35, No. 10, pp. 1892-1901, 2006.
6. H. Rhee, J. P. Lucas and K. N. Subramanian, “Micromechanical characterization of thermomechanically fatigued lead-free solder joints,” Journal of Materials Science: Materials in Electronics, Vol. 13, pp. 477-484, 2002.
7. R. R. Chromik, R. P. Vinci, S. L. Allen and M. R. Notis, “Nanoindentation measurements on Cu-Sn and Ag-Sn intermetallics formed in Pb-free solder joints,” Journal of Materials Research, Vol. 18, No. 9, pp. 2251-2261, 2003.
8. H.-J. Albrecht, A. Juritza, K. Müller, W. H. Müller, J. Sterthaus, J. Villain and A. Vogliano, “Interface reactions in microelectronic solder joints and associated intermetallic compounds: an investigation of their mechanical properties using nanoindentation,” Proc. 5th Electronics Packaging Technology Conference, Singapore, pp. 726-731, 2003.
9. X. Deng, M. Koopman, N. Chawla and K. K. Chawla, “Young’s modulus of (Cu,Ag)-Sn intermetallics measured by nanoindentation,” Materials Science and Engineering: A, Vol. 364, pp. 240-243, 2004.
10. X. Deng, N. Chawla, K. K. Chawla and M. Koopman, “Deformation behavior of (Cu,Ag)-Sn intermetallics by nanoindentation,” Acta Materialia, Vol. 52, No. 14, pp. 4291-4303, 2004.
11. G.-Y. Jang, J.-W. Lee and J.-G. Duh, “The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump” Journal of Electronic Materials, Vol. 33, No. 10, pp. 1103-1110, 2004.
12. L. Xu and J. H. L. Pang, “Nano-indentation characterization of Ni-Cu-Sn IMC layer subject to isothermal aging,” Thin Solid Films, Vol. 504, pp. 362-366, 2006.
13. Z. Chen, M. He, B. Balakrisnan and C. C. Chum, “Elasticity modulus, hardness and fracture toughness of Ni3Sn4 intermetallic thin films,” Materials Science and Engineering: A, Vol. 423, pp. 107-110, 2006.
14. J. B. Pethica, R. Hutchings and W. C. Oliver, “Hardness measurement at penetration depths as small as 20 nm,” Philosophical Magazine A, Vol. 48, No. 4, pp. 593-606, 1983.
15. D. Lebouvier, P. Gilormini and E. Felder, “A kinematic model for plastic indentation of a bilayer,” Thin Solid Films, Vol. 172, No. 2, pp. 227-239, 1989.
16. D. Beegan, S. Chowdhury and M. T. Laugier, “Comparison Between Nanoindentation and Scratch Test Hardness (Scratch Hardness) Values of Copper Thin Films on Oxidised Silicon Substrates,” Surface and Coatings Technology, Vol. 201, No. 12, pp. 5804-5808, 2007.
17. S.-R. Jian, I.-J. Teng, P.-F. Yang, Y.-S. Lai, J.-M. Lu, J.-G. Chang and S.-P. Ju, “Surface Morphological and Nanomechanical Properties of PLD-Derived ZnO Thin Films,” Nanoscale Research Letter, Vol. 3, No. 5, pp. 186-193, 2008.
18. A. M. Hodge and T. G. Nieh, “Evaluating Abrasive Wear of Amorphous Alloys Using Nanoscratch Technique,” Intermetallics, Vol. 12, No. 7-9, pp. 741-748, 2004.
19. A. Dasari, Z.-Z. Yu and Y.-W. Mai, “Nanoscratching of Nylon 66-Based Ternary Nanocomposites,” Acta Materialia, Vol. 55, No. 2, pp. 653-646, 2007.
20. S. Sharma, L. Fransson, E. Sjöstedt, L. Nordström, B. Johansson and K. Edström, “A Theoretical and Experimental Study of the Lithiation of h'-Cu6Sn5 in a Lithium-Ion Battery,” Journal of the Electrochemical Society, Vol. 150, No. 3, pp. A330-A334, 2003.
21. W. Pu, X. He, J. Ren, C. Wan and C. Jiang, “Electrodeposition of Sn-Cu Alloy Anodes for Lithium Batteries,” Electrochimica Acta, Vol. 50, No. 20, pp. 4140-4145, 2005.
22. S. A. Studenikin, N. Golego and M. Cocivera, “Fabrication of Green and Orange Photoluminescent, Undoped ZnO Films Using Spray Pyrolysis,” Journal of Applied Physics, Vol. 84, No. 4, pp. 2287-2294, 1998.
23. D. F. Paraguay, L. W. Estrada, N. D. R. Acosta, E. Andrade and M. Miki-Yoshida, “Growth, Structure and Optical Characterization of High Quality ZnO Thin Films Obtained by Spray Pyrolysis,” Thin Solid Films, Vol. 350, pp. 192-202, 1999.
24. M. Bender, E. Gagaoudakis, E. Douloufakis, E. Natsakou, N. Katsarakis, V. Cimalla, G. Kiriakidis, E. Fortunato, P. Nunes, A. Marques and R. Martins, “Production and Characterization of Zinc Oxide Thin Films for Room Temperature Ozone Sensing,” Thin Solid Films, Vol. 418, pp. 45-50, 2002.
25. H. Takikawa, K. Kimura, R. Miyano and T. Sakakibara, “ZnO Film Formation Using a Steered and Shielded Reactive Vacuum Arc Deposition,” Thin Solid Films, Vol. 377-378, pp. 74-80, 2000.
26. S. Roy and S. Basu, “Improved Zinc Oxide Film for Gas Sensor Applications,” Bulletin Materials Science, Vol. 25, No. 6, pp. 513-515, 2002.
27. D. Bao, H. Gu and A. Kuang, “Sol-gel-derived c-axis Oriented ZnO Thin Films,” Thin Solid Films, Vol. 312, pp. 37-39, 1998.
28. H.-W. Ryu, B.-S. Park, S. A. Akbar, W.-S. Lee, K.-J. Hong, Y.-S. Seo, D.-C. Shin, J.-S. Park and G.-P. Choi, “ZnO Sol-gel Derived Porous Film for CO Gas Sensing,” Sensors Actuators B: Chemical, Vol. 96, No. 3, pp. 717-722, 2003.
29. M. N. Kamalasanan and S. Chandra, “Sol-gel Synthesis of ZnO Thin Films,” Thin Solid Films, Vol. 288, pp. 112-115, 1996.
30. W. Water and S.-Y. Chu, “Physical and Structural Properties of ZnO Sputtered Films,” Materials Letters, Vol. 55, pp. 67-72, 2002.
31. Y. M. Lu, W. S. Hwang, W. Y. Liu and J. S. Yang, “Effect of RF Power on Optical and Electrical Properties of ZnO Thin Film by Magnetron Sputtering,” Materials Chemistry and Physics, Vol. 72, No. 2, pp. 269-272, 2001.
32. P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances Presented by Zinc Oxide Thin Films Deposited by r.f. Magnetron Sputtering,” Vacuum, Vol. 64, No. 3-4, pp. 293-297, 2002.
33. M. de la L. Olvera, A. Maldonado, R. Asomoza and S. Tirado-Guerra, “Characteristics of Transparent and Conductive Undoped ZnO Thin Films Obtained by Chemical Spray Using Zinc Pentanedionate,” Thin Solid Films, Vol. 411, pp. 198-202, 2002.
34. B. S. Li, Y. C. Liu, D. Z. Shen, J. Y. Zhang, Y. M. Lu and X. W. Fan, “Effects of RF Power on Properties of ZnO Thin Films Grown on Si (0 0 1) Substrate by Plasma Enhanced Chemical Vapor Deposition,” Journal of Crystal Growth, Vol. 249, pp. 179-185, 2003.
35. B. Kotlyarchuk, V. Savchuk and M. Oszwaldowski, “Preparation of Undoped and Indium Doped ZnO Thin Films by Pulsed Laser Deposition Method,” Crystal Research and Technology, Vol. 40, No. 12, pp. 1118-1123, 2005.
36. S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Applied Physics Letters, Vol. 69, No. 27, pp. 4188-4190, 1996.
37. Y. Narukawa, Y. Kawakami, S. Fujita, S. Fujita and S. Nakamura, “Recombination dynamics of localized excitons in In0.20Ga0.80N-In0.05Ga0.95N multiple quantum wells,” Physical Review B, Vol. 55, No. 4, pp. R1938-R1941, 1997.
38. F.-R. Hu, Y. Kanamori, K. Ochi, Y. Zhao, M. Wakui and K. Hane, “A 100 nm thick InGaN/GaN multiple quantum-well column-crystallized thin film deposited on Si(111) substrate and its micromachining,” Nanotechnology, Vol. 19, pp. 035395(6pp), 2008.
39. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes,” Japanese Journal of Applied Physics, Vol. 35, L74-L76, 1996.
40. Z. Chen, D.-C. Lu, H.-R. Yuan, P. Han, X.-L. Liu, Y.-F. Li, X.-H. Wang, Y. Lu and Z.-G. Wang, “A new method to fabricate InGaN quantum dots by metalorganic chemical vapor deposition,” Journal of Crystal Growth, Vol. 235, pp. 188-194, 2002.
41. D.-J. Kim, Y.-T. Moon, K.-M. Song, I.-H. Lee and S.-J. Park, “Effect of Growth Pressure on Indium Incorporation During the Growth of InGaN by MOCVD,” Journal of Electronic Materials, Vol. 30, No. 2, pp. 99-102, 2001.
42. M.-S. Lee, S. Wu, Z.-X. Lin and R. Ro, “Bulk acoustic wave analysis of crystalline-plane-oriented aluminum nitride films,” Japanese Journal of Applied Physics, Vol. 46, No. 10A, pp. 6719-6726, 2007.
43. S. Wu, Z.-X. Lin, M.-S. Lee, R. Ro and K. I Chen, “Pure shear bulk acoustic wave of the oriented AlN,” Proc. 16th IEEE International Symposium on Applications of Ferroelectrics, Nara Japan, pp. 746-749, 2007.
44. S. Wu, Z.-X. Lin, M.-S. Lee and R. Ro, “Theoretical bulk acoustic wave properties of (103) AlN films,” Japanese Journal of Applied Physics, Vol. 46, No. 6A, pp. 3471-3474, 2007.
45. Z.-X. Lin, S. Wu, R. Ro and M.-S. Lee, “Sputtering (103) oriented AlN and its SAW properties analysis,” Proc. 16th IEEE International Symposium on Applications of Ferroelectrics, Nara Japan, pp. 774-776, 2007.
46. S. Tanaka, R. S. Kern, J. Bentley and R. F. Davis, “Defect formation during hetero-epitaxial growth of aluminum nitride thin films on 6H-silicon carbide by gas-source molecular beam epitaxy,” Japanese Journal of Applied Physics, Vol. 35, No. 3, pp. 1641-1647, 1996.
47. K. S. Stevens, A. Ohtani, M. Kinniburgh and R. Beresford, “Microstructure of AlN on Si (111) grown by plasma-assisted molecular beam epitaxy,” Applied Physics Letters, Vol. 65, No. 3, pp. 321-323, 1994.
48. J. R. Mileham, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, R. J. Shul and S. P. Kilcoyne, “Wet chemical etching of AlN,” Applied Physics Letters, Vol. 67, No. 8, pp. 1119-1121, 1995.
49. V. Dobrynin, “Thermoelastic strain and plastic yielding in aluminum nitride on sapphire,” Journal of Applied Physics, Vol. 85, No. 3, pp. 1876-1882, 1999.
50. R. Rodríguez-Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand and A. Figueras, “Morphological properties of chemical vapour deposited AlN films,” Journal of Crystal Growth, Vol. 133, No. 1-2, pp. 59-70, 1993.
51. P. Kung, A. Saxler, X. Zhang, D. Walker, T. C. Wang, I. Ferguson and M. Razeghi, “High quality AlN and GaN epilayers grown on (00-1) sapphire, (100), and (111) silicon substrates,” Applied Physics Letters, Vol. 66, No. 22, pp. 2958-2960, 1995.
52. S. Six, J. W. Gerlach and B. Rauschenbach, “Epitaxial aluminum nitride films on sapphire formed by pulsed laser deposition,” Thin Solid Films, Vol. 370, No. 1-2, pp. 1-4, 2000.
53. W.-T. Lin, L.-C. Meng, G.-J. Chen and H.-S. Liu, “Epitaxial growth of cubic AlN films on (100) and (111) silicon by pulsed laser ablation,” Applied Physics Letters, Vol. 66, No. 16, pp. 2066-2068, 1995.
54. R. D. Vispute, H. Wu and J. Narayan, “High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition,” Applied Physics Letters, Vol. 67, No. 11, pp. 1549-1551, 1995.
55. C. Caliendo and P. Imperatori, “Structural, optical, and acoustic characterization of high-quality AlN thick films sputtered on Al2O3(0001) at low temperature for GHz-band electroacoustic devices applications,” Journal of Applied Physics, Vol. 96, No. 5, pp. 2610-2615, 2004.
56. H.-E. Cheng, T.-C. Lin and W.-C. Chen, “Preparation of [0 0 2] oriented AlN thin films by mid frequency reactive sputtering technique,” Thin Solid Films, Vol. 425, No. 1-2, pp. 85-89, 2003.
57. X.-H. Xu, H.-S. Wu, C.-J. Zhang and Z.-H. Jin, “Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering,” Thin Solid Films, Vol. 388, No. 1-2, pp. 62-67, 2001.
58. G. Wingqvist, J. Bjurstrom, L. Liljeholm, I. Katardjiev, A.L. Spetz, “Shear Mode AlN Thin film electroacoustic resonator for biosensor applications,” Proceedings of IEEE Sensors, pp. 492-495, 2005.
59. J. Bjurstrom, G. Wingqvist, I. Katardjiev, “Synthesis of textured thin piezoelectric AlN Films with a nonzero mean tilt for the fabrication of shear mode resonator,” IEEE Ultrasonics Symposium, No. 1, pp. 321-324, 2005.
60. Z. G. Wu, G. A. Zhang, M. X. Wang, X. Y. Fan, P. X. Yan and T. Xu, “Structure and mechanical properties of Al/AlN multilayer with different AlN layer thickness,” Applied Surface Science, Vol. 253, No. 5, pp. 2733-2738, 2006.
61. J. H. Lee, W. M. Kim, T. S. Lee, M. K. Chung, B.-K. Cheong and S. G. Kim, “Mechanical and adhesion properties of Al/AlN multilayered thin films,” Surface Coatings Technology, Vol. 133-134, pp. 220-226, 2000.
62. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, “Amorphization and Conductivity of Silicon and Germanium Induced by Indentation,” Physical Review Letters, Vol. 60, No. 21, pp. 2156-2159, 1988.
63. Y.Q. Wu, X.Y. Yang, Y.B. Xu, “Cross-sectional electron microscopy observation on the amorphized indentation region in [001] single crystal silicon,” Acta Materialia, Vol. 47, No. 8, pp. 2431-2436, 1999.
64. V. Domnich, Y. Gogotsi, S. Dub, “Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon,” Applied Physics Letters, Vol. 76, No. 16, pp. 2214-2216, 2000.
65. A.B. Mann, D. van Heerden, J.B. Pethica, T.P. Weihs, “The transformation of Si under point contacts,” Journal of Materials Research, Vol. 15, No. 8, pp. 1754-1758, 2000.
66. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe, “Mechanical deformation in silicon by micro-indentation,” Journal of Materials Research, Vol. 16, pp. 1500-1507, 2001.
67. T. Juliano, Y. Gogotsi, V. Domnich, “Effect of indentation unloading conditions on phase transformation induced events in silicon,” Journal of Materials Research, Vol. 18, pp. 1192-1201, 2003.
68. A. Kailer, Y.G. Gogotsi, K.G. Nickel, “Phase transformations of silicon caused by contact loading,” Journal of Applied Physics, Vol. 81, No. 7, pp. 3057-3063, 1997.
69. R.O. Piltz, J.R. Maclean, S.J. Clarke, G.J. Ackland, P.D. Hatton, J. Crain, “Structure and properties of silicon XII: A complex tetrahedrally bonded phase,” Physical Review B, Vol. 52, pp. 4072-4085, 1995.
70. J. Jang, M.J. Lance, S. Wen, T.Y. Tsui, G.M. Pharr, “Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior,” Acta Materialia, Vol. 53, No. 6, pp. 1759-1770, 2005.
71. I. Zarudi, L. C. Zhang and M. V. Swain, “Microstructure evolution in monocrystalline silicon in cyclic microindentations,” Journal of Materials Research, Vol. 18, No. 4, pp. 758-761, 2003.
72. I. Zarudi, L.C. Zhang, M.V. Swain, “Behavior of monocrystalline silicon under cyclic microindentations with a spherical indenter,” Applied Physics Letters, Vol. 82, No. 7, pp. 1027-1029, 2003.
73. J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport properties. IV. The equations of hydrodynamics,” Journal of Chemical Physics, Vol. 18, pp. 817-823, 1950.
74. I. Zarudi, L.C. Zhang, W.C.D. Cheong, T.X. Yu, “The difference of phase distributions in silicon after indentation with Berkovich and spherical indenters,” Acta Materialia, Vol. 53, No. 18, pp. 4795-4800, 2005.
75. W.C.D. Cheong, L.C. Zhang, “Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation,” Nanotechnology, Vol. 11, pp. 173-180, 2000.
76. W.C.D. Cheong, L.C. Zhang, “A stress criterion for the β-Sn transformation in silicon under indentation and uniaxial compression,” Key Engineering Materials, Vols. 233-236, pp. 603-608, 2003.
77. B. Bhushan, Handbook of Micro/Nano Tribology, (CRC, Press), 1995.
78. I.N. Sneddon, “The relaxation between load and penetration in the axisymmetric Bussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science, Vol.3, pp. 47-57, 1965.
79. P.-F. Yang, S.-R. Jian, Y.-S. Lai, C.-S. Yang and R.-S. Chen, “Morphological, structural, and mechanical characterizations of InGaN thin films deposited by MOCVD.” Journal of Alloys and Compounds, Vol. 463, pp. 533-538, 2008.
80. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, No. 6, pp. 1564-1583, 1992.
81. X. Wang, A. Kolitsch and W. Möller, “Roughness Improvement and Hardness Enhancement in Nanoscale Al/AlN Multilayered Thin Films,” Applied Physics Letters, vol. 71, no. 14, pp. 1951-1953, 1997.
82. A. A. Volinsky, J. B. Vella and W. W. Gerberich, “Fracture Toughness, Adhesion and Mechanical Properties of Low-K Dielectric Thin Films Measured by Nanoindentation,” Thin Solid Films, Vol. 429, No. 1-2, pp. 201-210, 2003.
83. X. Li and B. Bhushan, “A review of nanoindentation continuous stiffness measurement technique and its applications,” Material Characterization, Vol. 48, No. 1, pp. 11-36, 2002.
84. J. F. Archard, “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, No. 8, pp. 981-988, 1953.
85. I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, Boca Raton, FL: CRC Press, 1992.
86. E. Rabinowicz, L. A. Dunn and P. G. Russell, “A Study of Abrasive Wear Under Three-Body Conditions,” Wear, Vol. 4, No. 5, pp. 345-355, 1961.
87. R. J. Arsenault, J. R. Beeler, “Computer Simulation in Material Science,” Asm INTERNATIONAL, USA, 1988.
88. S. Roger and J. Mario, “Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Applications,” Cambridge University Press: Cambridge, United Kingdom 1997.
89. J. E. Lennard-Jones, “The determination of molecular fieldS. I. From the variation of the viscosity of a gas with temperature,” Proc. Roy. Soc. (Lond.), 106A, 441, 1924; “The determination of molecular fieldS. II. From the variation of the viscosity of a gas with temperature,” Proc. Roy. Soc. (Lond.), 106A, 463, 1924.
90. L. A. Girifalco and V. G. Weizer, “Application of the Morse potential function to cubic metals,” Physical Review, Vol. 114, No. 3, pp. 687-690, 1959.
91. R. A. Johnson, “Analytic nearest-neighbor model for FCC metals,” Physical Review B, Vol. 37, No. 8, pp. 3924-3931, 1987.
92. H. Hakkinen and M. Manninen, “The effective-medium theory beyond the nearest-neighbour interaction,” Journal of Physics: Condensed Matter, Vol. 1, pp. 9765-9777, 1989.
93. K. W. Jacobsen, “Bonding in metallic system: An effective-medium approach,” Comments Condensed Matter Physics, Vol. 14, No. 3, pp. 129-161, 1988.
94. J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov and S. Yip, “Interatomic potential for silicon defects and disordered phases,” Physical Review B, Vol. 58, No. 5, pp. 2539-2550, 1998.
95. J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Physical Review B, Vol. 39, No. 8, pp. 5566-5568, 1989.
96. G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, Intermolucluar Forces, Oxford University Press, London, 1987.
97. J. M. Haile, “Molecular dynamics simulation: Elementary methods,” John Wiely & Sons, Inc., USA, 1992.
98. L. Verlet, “Computer experiment on classical fluids II, equilibrium correlation function,” Physical Review, Vol. 165, pp. 201-214, 1968.
99. D. C. Rapaport, “The art of molecular dynamics simulation,” Cambridge University Press, London, 1997.
100. D. Frankel and B. Smit, “Understanding Molecular Simulation,” Academic Press, San Diego, 1996.
101. J.-W. Yoon, S.-W. Kim and S.-B. Jung, “Interfacial reaction and mechanical properties of eutectic Sn-0.7Cu/Ni BGA solder joints during isothermal long-term aging,” Journal of Alloys and Compounds, Vol. 391, No. 1-2, pp. 82-89, 2005.
102. J. B. Pethica, R. Hutchings and W. C. Oliver, “Hardness measurement at penetration depths as small as 20 nm,” Philosophical Magazine A, Vol. 48, No. 4, pp. 593-606, 1983.
103. D. Lebouvier, P. Gilormini and E. Felder, “A kinematic model for plastic indentation of a bilayer,” Thin Solid Films, Vol. 172, No. 2, pp. 227-239, 1989.
104. Y. H. Yoon, J. W. Choi and D. H. Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering,” Thin Solid Films, Vol. 302, pp. 116-121, 1997.
105. M. A. Khan, A. Bhattarai, J. N. Kuznia and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1–xN heterojunction,” Applied Physics Letters, Vol. 63, No. 9, pp. 1214-1215, 1993.
106. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Japanese Journal of Applied Physics, Vol. 34, L1332-L1335, 1995.
107. B. Gil ed., Group III Nitride Semiconductor Compounds: Physics and Applications, Oxford University Press, New York, 1998.
108. P. Kavouras, Ph. Komninoua and Th. Karakostas, “Effects of ion implantation on the mechanical behavior of GaN films,” Thin Solid Films, Vol. 515, No. 5, pp. 3011-3018, 2007.
109. H. Fritze, M. Schulz, H. Seh, H. L. Tuller, “High temperature operation and stability of langasite resonators,” MRS Symposium Proceedings, Vol. 828, pp. 145-150, 2005.
110. K. Shimamura, H. Takeda, T. Kohno, T. Fukuda, “Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications”, Journal of Crystal Growth, Vol. 163, No. 4, pp. 388-392, 1996.
111. B. Chai, J. L. Lefaucheur, Y. Y. Ji, H. Qui, “Growth and evaluation of large size LGS (La3Ga5SiO14) LGN (La3Ga5.5Nb0.5O14) and LGT (La3Ga5.5Ta0.5O14) single crystals,” Proc. 1998 IEEE International Frequency Control Symposium, Pasadena, CA, USA, pp. 748-760, 1998.
112. J. G. Gualtieri, J. A. Kosinski, A. Ballato, “Piezoelectric materials for acoustic wave applications,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 41, No. 1, pp. 53-59, 1994.
113. S. Sakharov, P. Senushencov, A. Medvedev , Yu Pisarevsky, “New data on temperature stability and acoustical losses of langasite crystals,” Proc. 49th IEEE International Frequency Control Symposium, San Francisco, CA, USA, pp. 647-652, 1995.
114. H. Satoh, A. Mori, “Surface acoustics wave propagation characteristics on a langasite crystal plate,” Japanese Journal of Applied Physics, Vol. 36, pp. 3071-3073, 1997.
115. Y.H. Lin, T.C. Chen, P.F. Yang, S.R. Jian, Y.S. Lai, “Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon,” Applied Surface Science, Vol. 254, pp. 1415-1422, 2007.
116. S. G. Corcoran, R. J. Colton, E. T. Lilleodden and W. W. Gerberich, “Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals,” Physical Review B, Vol.55, No. 24, pp. R16057-R16060, 1997.
117. R. J. Fields, S. R. Low III and G. K. Lucey, Jr., “Physical and mechanical properties of intermetallic compounds commonly found in solder joints,” The Metal Science of Joining, eds. M. J. Cieslak, J. H. Perepezko, S. Kang and M. E. Glicksman (Warrendale, PA: TMS, 1992), pp. 165-173.
118. R. Hill, “The elastic behaviour of a crystalline aggregate,” Proceedings of the Physical Society, Vol. A65, pp. 349-354, 1952.
119. N.T.S. Lee, V.B.C. Tan, K.M. Lim, “First-principles calculations of structural and mechanical properties of Cu6Sn5,” Applied Physics Letters, Vol. 88, pp. 031913, 2006.
120. J. Chen, Y.-S. Lai and D.-J. Huang, “First-principles calculations of elastic properties of Cu3Sn,” Applied Physics Letters, Vol. 92, pp. 081901, 2008.
121. A. Bolshakov and G. M. Pharr, “The influence of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques,” Journal of Materials Research, Vol. 13, No. 4, pp. 1049-1058, 1998.
122. P.-F. Yang, Y.-S. Lai, S.-R. Jian, J. Chen and R.-S. Chen, “Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples,” Materials Science and Engineering: A, Vol. 485, No. 1-2, pp. 305-310, 2008.
123. A. M. Hodge and T. G. Nieh, “Evaluating Abrasive Wear of Amorphous Alloys Using Nanoscratch Technique,” Intermetallics, Vol. 12, No. 7-9, pp. 741-748, 2004.
124. I. M. Hutchings, Tribology: Friction and Wear of Engineering Materials, CRC Press, Boca Raton, FL, USA, 1992.
125. Schulz H, Thiemann KH, “Structure parameters and polarity of the wurtzite type compounds Sic-2H and ZnO,” Solid State Communications, Vol. 126, No. 9, pp. 783-785, 1979.
126. Lim WT, Lee CH, “Highly oriented ZnO thin films deposited on Ru/Si substrates,” Thin Solid Films, Vol. 353, pp. 12-15, 1999.
127. Kim YJ, Kim YT, Yang HK, Park JC, Han JI, Lee YE, Kim HJ, “Epitaxial growth of ZnO thin films on R-plane sapphire substrate by radio frequency magnetron sputtering,” Journal of Vacuum Science and Technology A, Vol. 15, No. 3, pp. 1103-1107, 1997.
128. Meng L-J, Andritschky M, dos Santos MP, “Zinc oxide films prepared by dc reactive magnetron sputtering at different substrate temperatures,” Vacuum, Vol. 45, No. 1, pp. 19-22, 1994.
129. Shin JW, Lee JY, Kim TW, No YS, Cho WJ, Choi WK, “Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates,” Applied Physics Letters, Vol. 88, 091911, 2006.
130. Yuk JM, Lee JY, Jung JH, Kim TW, Son DI, Choi WK, “Initial formation mechanisms of the supersaturation region and the columnar structure in ZnO thin films grown on n-Si(001) substrates,” Applied Physics Letters, Vol. 90, 031907, 2007.
131. Coleman VA, Bradby JE, Jagadish C, Munroe P, Heo YW, Pearton SJ, Norton DP, Inoue M, Yano M, “Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire,” Applied Physics Letters, Vol. 86, 203105, 2005.
132. R. W. Vook, “X-ray diffraction,” in Epitaxial Growth, Part A, pp. 339, J. W. Matthews ed., Academic Press, New York, 1975.
133. K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
134. S.-R. Jian, T.-H. Fang and D.-S. Chuu, “Analysis of physical properties of III-nitride thin films by nanoindentation,” Journal of Electronic Materials, Vol. 32, No. 6, pp. 496-500, 2003.
135. H. Bei, E. P. George, J. L. Hay and G. M. Pharr, “Influence of indenter tip geometry on elastic deformation during nanoindentation,” Physical Review Letters, Vol. 95, 045501, 2005.
136. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen and H. S. Leipner, “Pop-in effect as homogeneous nucleation of dislocations during nanoindentation,” Physical Review B, Vol. 67, No. 17, 172101, 2003.
137. D. Cáceres, I. Vergara, R. González, E. Monroy, F. Calle, E. Muñoz and F. Omnès, “Nanoindentation on AlGaN thin films,” Journal of Applied Physics, Vol. 86, No. 12, pp. 6773-6778, 1999.
138. H. Wen, X. Wang and L. Li, “Mechanical properties of sol-gel derived BiScO3–PbTiO3 thin films by nanoindentation,” Journal of Applied Physics, Vol. 100, 084315, 2006.
139. W. D. Nix and H. Gao, “Indentation size effects in crystalline materials: A law for strain gradient plasticity,” Journal of the Mechanics and Physics of Solids, Vol. 46, No. 3, pp. 411-425, 1998.
140. A. A. Elmustafa and D. S. Stone, “Indentation size effect in polycrystalline F.C.C. metals,” Acta Materialia, Vol. 50, No. 14, pp. 3641-3650, 2002.
141. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, and B. J. Hockey, “Amorphization and Conductivity of Silicon and Germanium Induced by Indentation,” Physical Review Letters, Vol. 60, No. 21, pp. 2156-2159, 1988.
142. J.C. Morris and D.L. Callahan, “Origins of microplasticity in low-load scratching of silicon,” Journal of Materials Research, Vol. 9, No. 11, pp. 2907-2913 , 1994.
143. V. Domnich, Y. Gogotsi, S. Dub, “Effect of phase transformations on the shape of the unloading curvein the nanoindentation of silicon,” Applied Physics Letters, Vol. 76, No. 16, pp. 2214-2216, 2000.
144. L.L. Boyer, E. Kaxiras, J.L. Feldman, J.Q. Broughton, M.J. Mehl, “New low-energy crystal structure for silicon,” Physical Review Letters, Vol. 67, No. 6, pp. 715-718, 1991.
145. D.E. Kim, S.I. Oh, “Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation,” Nanotechnology, Vol. 17, pp. 2259-2265, 2006.
146. J .Crain, S.J. Clark, G.J. Ackland, M.C. Payne, V. Milman, P.D. Hatton, B.J. Reid, “Theoretical study of high-density phases of covalent semiconductors I. Ab initio treatment,” Physical Review B, Vol. 49, No. 8, pp. 5329-5340, 1994.
147. J. Crain, G.J. Ackland, J.R. Maclean, R.O. Piltz, P.D. Hatton, G.S. Pawley, “Reversible pressure-induced structural transitions between metastable phases of silicon,” Physical Review B, Vol. 50, No. 17, pp. 13043-13046, 1994.
148. C.F. Sanz-Navarro, S.D. Kenny, R. Smith, “Atomistic simulations of structural transformations of silicon surfaces under nanoindentation,” Nanotechnology Vol. 15, pp. 692-697, 2004.