簡易檢索 / 詳目顯示

研究生: 許雅穎
Hsu, Ya-Ying
論文名稱: 乙醯化轉移酶MORF調控姐妹染色體互換的機制
Mechanism of histone acetyltransferase MORF in regulation of sister chromatid exchange
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 組蛋白乙醯化轉移酶DNA 修復路徑順鉑抗藥性姐妹染色體互換率去整合蛋白肝癌
外文關鍵詞: MYST family of histone acetyltransferases, MORF, DNA repair pathways, cisplatin-resistant cancer, sister chromatid exchange, nasopharyngeal carcinoma, hepatocarcinoma, disintegrin
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MORF 是屬於乙醯化轉移酶MYST 家族之一,它對基因轉錄、DNA 損害
    反應、DNA 修復作用以及DNA 的複製路徑中扮演很重要的角色。我們的研究中發現MORF 在具有順鉑抗藥性的鼻咽癌細胞株HONE 6 及HONE 15 (nasopharyngeal carcinoma; NPC)有高度的表現。我們將細胞中的MORF knockdown 後,發現細胞不僅對於順鉑藥物敏感,且在DNA 修復路經中Fanconi anemia(FA)、homologous recombination(HR)及post-replication repair(PRR)相關基因的表現量亦有下降,以及姊妹染色體互換率(sister chromatid exchange)降低。我們的結果顯示出MORF 會透過組蛋白乙醯化來調控HR、FA、和PRR 中的TS 路徑。此外,我們在帶有B 肝的肝癌細胞中發現HR 路徑主要基因BRCA 1 和BRCA 2 有高度的表現,這個結果顯示出增強HR路徑可能關聯到肝癌的產生。我們另外也研究去整合蛋白(disintegrin)處理在肝癌細胞後的效果。我們發現帶有RGD loop 的去整合蛋白能有效的殺死肝癌細胞(HuH 7 cell)。有趣的是,我們發現將肝臟星狀細胞(Liver perisinusoidal stallate cells; HSC)與肝癌細胞(HuH 7 cell)共培養(co-culture)處理去整合蛋白,比較單獨培養肝癌細胞,可以更有效的殺死肝癌細胞。從結果中我們發現,利用去整合蛋白破壞微環境(microenviroment)可以殺死肝癌細胞,能運用在肝癌治療方面。

    MORF belongs to the MYST family of histone acetyltransferases. It plays an important role in transcription , DNA damage response and repair, as well as DNA replication. In our study, we found that MORF is highly expressed in cisplatin-resistant HONE6 and HONE15 cell (nasopharyngeal carcinoma; NPC). Depletion of MORF results in cell sensitivity to cisplatin, reduction of the expression of several genes involved in Fanconi anemia (FA), homologous recombination (HR), post-replication repair (PRR) pathways, and reduction of SCE frequency. Our results indicate that MORF could regulate HR, FA, and TS pathways through histone acetylation. In addition, HR pathway-related genes, BRCA1 and BRCA2, are highly expressed in the hepatitis B positive liver cancer cells, suggesting enhanced HR pathway may play a role in liver cancer development. Furthermore, we also investigate the efficacy of disintegrin in treating liver cancer. We found that disintegrin containing RGD loop is effective to kill liver cancer cell HuH7. Interestingly, the efficacy is better in the presence of hepatic stellate cells (HSC) than in the absence of HSC cells. Our results suggest that disruption of microenvironment by disintegrin can kill liver cancer effective. Disintegrin could be used to treat liver cancer.

    中文摘要-------------------------------------------------I Abstract-----------------------------------------------II 致謝--------------------------------------------------VII 目錄---------------------------------------------------IX 圖目錄------------------------------------------------XII 第壹章 緒論 第一節 前言 1-1 DNA損害反應(DNA damage response, DRR)----------------1 1-2基因體不穩定(Genomic instability)與突變表現假說(Mutator phenotype hypothesis)-----------------------------------1 1-3順鉑(cisplatin)藥物作用機制----------------------------3 1-4 MORF組蛋白乙醯化轉移酶--------------------------------4 1-5同源重組(Homologous recombination, HR)----------------5 1-6後複製修復機制(Post-replication repair, PRR)----------6 1-7范可尼貧血(Fanconi anemia pathway, FA)----------------6 1-8整合蛋白(integrin)與去整合蛋白(disintegrin)------------7 第二節 實驗目的------------------------------------------9 第貳章 實驗方法與材料 第一節 材料 2-1-1人類細胞株-----------------------------------------10 2-1-2肝癌病患shRNA檢體----------------------------------11 2-1-3引子合成(Oligo primer)設計-------------------------13 2-1-4 shRNA序列----------------------------------------14 第二節 實驗方法 2-2-1極低溫保存細胞(Cell freezing)----------------------15 2-2-2即時聚合酶鏈式反應(Real-time polymerase chain reaction; qRT-PCR)-------------------------------------16 2-2-3慢病毒製備(Lentiviral production)------------------17 2-2-4慢病毒感染人類細胞(Lentiviral infection)------------18 2-2-5 RNA萃取(Trizol)----------------------------------19 2-2-6 colony formation assay---------------------------19 2-2-7 3-(4, 5-dimethylthiazolyl-2)-2, 5 -dipheyltetrazolium bromide (MTT) assay----------------20 2-2-8 姐妹染色體互換(sister chromatid exchange, SCE)----20 2-2-9 西方墨點法(Western blot)--------------------------22 2-2-10高速藥物篩選螢光顯微影像分析(High throughput screening fluorescence microscopy)-------------------------------23 2-2-11 Mammalian mutagenesis assay---------------------24 第參章 結果 3-1降低MORF基因表現會使細胞對順鉑抗藥性更加敏感------------27 3-2 MORF基因調控HR、FA、PRR修復路徑的基因表現-------------28 3-3具有順鉑抗藥性HONE 6細胞株knockdown MORF及HLTF基因使姊妹染 色體互換率降低---------------------------------------29 3-4具有高度順鉑抗藥性的細胞株HONE 15在細胞生存率及染色體互換率 有明顯的增加-----------------------------------------29 3-5肝癌在DNA修復路徑相關基因之表現量----------------------31 3-6去整合蛋白(disintegrin)在肝癌細胞的微環境(microenviroment)對肝癌細胞生存率的影響------------------31 第肆章 討論 4-1探討備製的shMORF細胞株--------------------------------35 4-2探討乙醯化轉移酶MORF調節DNA修復與抗藥性----------------35 4-3鼻咽癌細胞的抗藥性是經由加強HR修復路徑來達成-------------37 4-4 NER、BER和MMR修復路徑在有無順鉑抗藥性細胞並無明顯差異---37 4-5 BRCA1與BRCA2基因表現異常可能與肝癌的發生有關聯---------38 4-5運用高通量螢光影像分析肝癌細胞模擬在體內微環境的生長機制--38 參考文獻------------------------------------------------40

    Adeyinka A, et al. A subgroup of breast carcinomas is cytogenetically characterized by trisomy 12. Cancer Genet Cytogenet 97: 119-121, 1997.
    Avvakumov N, and Cote J. The MYST family of histone acetyltransferases and their intimate links to cancer. Oncogene 26: 5395-5407, 2007.
    Bakhoum SF, and Compton DA. Chromosomal instability and cancer: a complex relationship with therapeutic potential. The Journal of clinical investigation 122: 1138-1143, 2012.
    Barry MA, et al. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochemical pharmacology 40: 2353-2362, 1990.
    Bielas JH, and Loeb LA. Mutator phenotype in cancer: timing and perspectives. Environmental and molecular mutagenesis 45: 206-213, 2005.
    Boram WR, and Roman H. Recombination in Saccharomyces cerevisiae: a DNA repair mutation associated with elevated mitotic gene conversion. Proceedings of the National Academy of Sciences of the United States of America 73: 2828-2832, 1976.
    Branzei D, and Foiani M. Template switching: from replication fork repair to genome rearrangements. Cell 131: 1228-1230, 2007.
    Branzei D, et al. Rad18/Rad5/Mms2-mediated polyubiquitination of PCNA is implicated in replication completion during replication stress. Genes to cells : devoted to molecular & cellular mechanisms 9: 1031-1042, 2004.
    Browne A, et al. Pharmacological Inhibition of beta3 Integrin Reduces the Inflammatory Toxicities Caused by Oncolytic Adenovirus without Compromising Anticancer Activity. Cancer research 75: 2811-2821, 2015.
    Champagne N, et al. Identification of a human histone acetyltransferase related to monocytic leukemia zinc finger protein. The Journal of biological chemistry 274: 28528-28536, 1999.
    Chapman JR, et al. Playing the end game: DNA double-strand break repair pathway choice. Molecular cell 47: 497-510, 2012.
    Cheng KC, and Loeb LA. Genomic instability and tumor progression: mechanistic considerations. Advances in cancer research 60: 121-156, 1993.
    D'Andrea AD. BRCA1: a missing link in the Fanconi anemia/BRCA pathway. Cancer discovery 3: 376-378, 2013.
    Denver DR, et al. The Relative Roles of Three DNA Repair Pathways in Preventing
    Caenorhabditis elegans Mutation Accumulation. Genetics 174: 57-65, 2006.
    Drost R, et al. BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer cell 20: 797-809, 2011.
    Eastman A. Cross-linking of glutathione to DNA by cancer chemotherapeutic platinum coordination complexes. Chemico-biological interactions 61: 241-248, 1987.
    Elices MJ, and Hemler ME. The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others. Proceedings of the National Academy of Sciences of the United States of America 86: 9906-9910, 1989.
    Enoiu M, et al. Repair of cisplatin-induced DNA interstrand crosslinks by a replication-independent pathway involving transcription-coupled repair and translesion synthesis. Nucleic acids research 40: 8953-8964, 2012.
    Fanconi G. Familial constitutional panmyelocytopathy, Fanconi's anemia (F.A.). I. Clinical aspects. Seminars in hematology 4: 233-240, 1967.
    Fishel R, et al. The Human Mutator Gene Homolog MSHP and Its Association with Hereditary Nonpolyposis Colon Cancer. Cell 75: 1027-1038, 1993.
    Friedberg EC. Suffering in silence: the tolerance of DNA damage. Nature reviews Molecular cell biology 6: 943-953, 2005.
    Garner E, and Smogorzewska A. Ubiquitylation and the Fanconi anemia pathway. FEBS letters 585: 2853-2860, 2011.
    Ginsberg MH, et al. Integrin regulation. Current opinion in cell biology 17: 2005.
    Gisselsson D, et al. Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis. Proceedings of the National Academy of Sciences of the United States of America 107: 20489-20493, 2010.
    Gudmundsdottir K, and Ashworth A. The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene 25: 5864-5874, 2006.
    Hawkins NJ, et al. Colorectal carcinomas arising in the hyperplastic polyposis syndrome progress through the chromosomal instability pathway. The American journal of pathology 157: 385-392, 2000.
    Houtgraaf JH, et al. A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovascular revascularization medicine : including molecular interventions 7: 165-172, 2006.
    Hsu MY, et al. Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. The American journal of pathology 153: 1435-1442, 1998.
    Hu¨bscher U, et al. EUKARYOTIC DNA POLYMERASES. Annual review of biochemistry 71: 133-163, 2002.
    Huang TF, et al. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. The Journal of biological chemistry 262: 16157-16163, 1987.
    Kauffman GB. Michele Peyrone (1813–1883),Discoverer of Cisplatin. Platinum Metals Review 54: 250, 2010.
    Kojima K, et al. A novel fusion variant of the MORF and CBP genes detected in therapy-related myelodysplastic syndrome with t(10;16)(q22;p13). British journal of haematology 120: 271-273, 2003.
    Kurzrock R, et al. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med 138: 819-830, 2003.
    Lengauer C, et al. Genetic instabilities in human cancers. Nature 396: 643-649, 1998.
    Liu Y, and West SC. Happy Hollidays: 40th anniversary of the Holliday junction. Nature reviews Molecular cell biology 5: 937-944, 2004.
    Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer research 51: 3075-3079, 1991.
    Loeb LA. A mutator phenotype in cancer. Cancer research 61: 3230-3239, 2001.
    Melchiori A, et al. The alpha 3 beta 1 integrin is involved in melanoma cell migration and invasion. Experimental cell research 219: 233-242, 1995.
    Moore SD, et al. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer research 64: 5570-5577, 2004.
    Motegi A, et al. Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Molecular and cellular biology 26: 1424-1433, 2006.
    Nakanishi K, et al. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proceedings of the National Academy of Sciences of the United States of America 102: 1110-1115, 2005.
    Natali PG, et al. Integrin expression in cutaneous malignant melanoma: association of the alpha 3/beta 1 heterodimer with tumor progression. International journal of cancer Journal international du cancer 54: 68-72, 1993.
    Neale MJ, and Keeney S. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442: 153-158, 2006.
    Nowak MA, et al. The role of chromosomal instability in tumor initiation. Proceedings of the National Academy of Sciences of the United States of America 99: 16226-16231, 2002.
    Nowell PC. Genetic alterations in leukemias and lymphomas: impressive progress and continuing complexity. Cancer Genet Cytogenet 94: 13-19, 1997.
    Ohta K, et al. Histone acetyltransferase MOZ acts as a co-activator of Nrf2-MafK and induces tumour marker gene expression during hepatocarcinogenesis. The Biochemical journal 402: 559-566, 2007.
    Ormerod MG, et al. Cisplatin induces apoptosis in a human ovarian carcinoma cell line without concomitant internucleosomal degradation of DNA. Experimental cell research 211: 231-237, 1994.
    Pandis N, et al. Deletion of the short arm of chromosome 3 in breast tumors. Genes, chromosomes & cancer 18: 241-245, 1997.
    Papadopoulos N, et al. Monoallelic mutation analysis (MAMA) for identifying germline mutations. Nature genetics 11: 99-102, 1995.
    Polanowska J, et al. A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. The EMBO journal 25: 2178-2188, 2006.
    Roos WP, and Kaina B. DNA damage-induced cell death by apoptosis. Trends in molecular medicine 12: 440-450, 2006.
    Rosenberg B, et al. INHIBITION OF CELL DIVISION IN ESCHERICHIA COLI BY ELECTROLYSIS PRODUCTS FROM A PLATINUM ELECTRODE. Nature 205: 698-699, 1965.
    Ruoslahti E. Integrins. The Journal of clinical investigation 87: 1-5, 1991.
    San Filippo J, et al. Mechanism of eukaryotic homologous recombination. Annual review of biochemistry 77: 229-257, 2008.
    Shen X, et al. Recruitment of fanconi anemia and breast cancer proteins to DNA damage sites is differentially governed by replication. Molecular cell 35: 716-723, 2009.
    Shiseki M, et al. p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer research 63: 2373-2378, 2003.
    Snapka RM. Gene amplification as a target for cancer chemotherapy. Oncology research 4: 145-150, 1992.
    Stuart GR, et al. Mutation frequency and specificity with age in liver, bladder and brain of lacI transgenic mice. Genetics 154: 1291-1300, 2000.
    Su W-P, et al. Chronic treatment with cisplatin induces replication-dependent
    sister chromatid recombination to confer cisplatin-resistant
    phenotype in nasopharyngeal carcinoma. Oncotarget 5: 15, 2014.
    Thomas T, et al. Querkopf, a MYST family histone acetyltransferase, is required for normal cerebral cortex development. Development 127: 2537-2548, 2000.
    Utley RT, and Cote J. The MYST family of histone acetyltransferases. Current topics in microbiology and immunology 274: 203-236, 2003.
    Weinert T. DNA damage checkpoints update: getting molecular. Current opinion in genetics & development 8: 185-193, 1998.
    Welcsh PL, and King MC. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human molecular genetics 10: 705-713, 2001.
    Xie K, et al. Error-prone translesion synthesis mediates acquired chemoresistance. Proceedings of the National Academy of Sciences of the United States of America 107: 20792-20797, 2010.
    Yaneva JN, et al. Histone H1 interacts preferentially with DNA fragments containing a cisplatin-induced 1,2-intrastrand cross-link. Zeitschrift fur Naturforschung C, Journal of biosciences 62: 905-908, 2007.
    Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic acids research 32: 959-976, 2004.
    Zhen DB, et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: a PACGENE study. Genetics in medicine : official journal of the American College of Medical Genetics 17: 569-577, 2015.
    Zhou S, et al. Effects of anticancer drugs on the metabolism of the anticancer drug 5,6-dimethylxanthenone-4-acetic (DMXAA) by human liver microsomes. British journal of clinical pharmacology 52: 129-136, 2001.
    林庚酉. 利用去整合蛋白抑制肝癌細胞黏附、遷移及侵犯能力. 2012.

    無法下載圖示 校內:2025-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE