| 研究生: |
陳澤輝 Chen, Ze-Hui |
|---|---|
| 論文名稱: |
以低溫濺鍍製程製備C軸優選取向氮化鋁壓電膜及其在無鉛壓電MEMS加速規應用之研究 Study of C-axis Aluminum Nitride Piezoelectric Films via Low-temperature Sputtering Method for Lead-free Piezoelectric MEMS Accelerometer Applications |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 奈米積體電路工程碩士博士學位學程 MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 氮化鋁 、低溫濺鍍製程 、無鉛壓電 、微機電 、加速規系統 、工具機 、智慧機械 |
| 外文關鍵詞: | C axis oriented, aluminum nitride, Lead-free Piezoelectric MEMS Accelerometer, Low-temperature Sputtering |
| 相關次數: | 點閱:77 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著物聯網與工業4.0興起,在智慧機械中位於物聯網最底層的振動感測元件(即為加速規),其可透過接收機械的振動進而產生訊號,經過後端感測電路處理即可以進行即時監控的功能,而市售壓電加速規多為塊材型加速規,其體積大且不容易與CMOS進行整合。市售MEMS加速規多為電容式MEMS加速規,其可用頻寬窄且易受雜訊影響,製程繁雜且良率低,壓阻式加速規常有靈敏度不足且易受溫度影響,因此本研究提出以無鉛壓電材料氮化鋁開發壓電式MEMS加速規,其製程相較於電容式MEMS加速規簡單、良率高、可用頻寬廣以及具有高靈敏度特性,更適合用在智慧機械上,並且無鉛壓電材料對環境污染性低。
微機電(MEMS)製程為CMOS製程的延伸,研究中我們以黃光微影方式定義各層圖案後濺鍍薄膜,以舉離方式進行光阻剝除。c軸優選取向氮化鋁製程中往往需要高溫製程,但光阻耐溫性差,會造成舉離不易,並且高溫製程也無法用於可饒曲式元件製作上,因此本研究將開發一低溫濺鍍製程,後將其應用於MEMS壓電加速規製作。
本研究以直流濺鍍方式製備氮化鋁(AlN)無鉛壓電薄膜於Si/SiO2/Ti/Pt,透過不同溫度變因取得最佳製程參數,並控制製程溫度得以低於元件製程光阻耐熱溫情況下製備c軸優選取向氮化鋁(AlN),透過XRD、AFM、SEM、TEM、d33等材料分析,將氮化鋁壓電膜應用於MEMS壓電加速規製程,待元件特性量測後,與感測電路進行整合,形成一模組化加速規系統,將模組置於工具機上進行監控測試,以實現智慧機械為最終目標。
In this project, we successfully deposit C axis oriented aluminum nitride piezoelectric films. With various material analysis, it proves that the deposited films have C axis preferred mono crystal as they are deposited at 100℃ dopostion temperature. XPS analysis and fitting prove the aluminum nitride piezoelectric films have strong chemical bonds. The d33 value of proposed films is 5.92pC/N which is better than most of the reported data. The MEMS piezoelectric accelerometers are then made based on the AlN films proposed with lift-off process.
We make two kinds of MEMS accelerometers, cantilever beam type and ring type, for different applications. Finally, the devices are Combined with the sensing circuit to detect the vibration of spindles.
1. H. Kopetz, “Real-Time Systems: Design Principles for Distributed Embedded Applications,” Springer Science, pp. 307-322, 2011.
2. S. Patrick, G. Jens Ole, and K. Lars Munch, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, pp. 131, 1996.
3. S. Sinha, S. Shakya, R. Mukhiya, R. Gopal, and B. D Pant, “Design and Simulation of MEMS Differential Capacitive Accelerometer, ” ISSS International Conference on Smart Materials, 2014.
4. A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, “Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study,” Sensors, vol. 8, no. 2, pp. 784 - 789, 2008.
5. Muralt P, “Recent progress in materials issues for piezoelectric MEMS,” J Am Ceram Soc 91, pp. 1385–1396, 2008
6. P. Curie and J. curie , ”Bull.Soc.Min.de France,” pp. 90, 1880
7. W. G. Hankel, “Abh. Sachs,” pp. 457, 1881
8. W. G. Hankel, “Ber. Sachs,” pp.52, 1881
9. P. Jegatheesan, and N. V. Giridharan, “Enhanced electrical properties of PZT thick films prepared by sol–gel technique through step-by-step crystallization process,” Journal of Materials Science: Materials in Electronics, vol. 23, no. 5, pp. 1103-1107, 2011.
10. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. Kang, Z. L. Wang, and K. J. Lee, “Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates,” Nano Lett, vol. 10, no. 12, pp. 4939-43, 2010.
11. F. Seitz, and D. Turnbull, “Solid State Physics,” vol. 7, 1958.
12. 孫. 朱建國,李衛, “電子與光電材料,” 北京國防工業出版社, 2007.
13. 吳朗, "電子陶瓷-壓電" 全欣科技圖書, vol. 7, pp. 7-74, 1994.
14. J. S. Lee, H. J. Lee, J. Y. Lee, S. H. Kang, I. W. Kim, C. W. Ahn, and G. S. Chung, “Preparation and Evaluation of Lead-Free Na0.5K0.5NbO3 Ferroelectric Thin Films,” Journal of the Korean Physical Society, vol. 52, no. 4, p. 1109-1113, 2008.
15. K. M. Lakin, K. T. Mccarron, R. E. Rose, ” Solidly mounted resonators and filters.”, IEEE ultrasonics symposium., 1995
16. R. Ruby, P. Bradley, J.D. Larson, Y. Oshmyansky, “PCS 1900MHz duplexer using thin film bulk acoustic resonators (FBARs),” Electron Lett , no. 35, pp. 794–795, 1999
17. R. Aigner, J. Ella, H. J. Timme, L. Elbrecht, W. Nessler, S. Marksteiner, ” Advancement of MEMS into RF applications,” Electron devices meeting IEDM’02, 2002
18. H. Schulz, K. H. Thiemann, ”Crystal structure refinement of AlN and GaN. “ , Solid State Comm, no. 23, pp. 815–819, 1977
19. G. A. Jeffrey, G. S. Parray, R. L. Mozzi, “Study of the wurtzite-type binary compounds.” I. Structures of AlN ad BeO. J Chem Phys, vol. 25, no. 5, pp. 1024–1031, 1955
20. C. L. Fei, X. L. Liu, B. P. Zhu, D. Li, X. F. Yang, Y.T. Yang, Q. F. Zhou, “AlN piezoelectric thin films for energy harvesting and acoustic devices,” Nano Energy , vol. 51, pp. 146-161, 2018
21. A. Iqbal, G. Walker, A. Iacopi, F. Mohd-Yasin,” Controlled sputtering of AlN (002) and (101) crystal orientations on epitaxial 3C-SiC-on-Si (100) substrate,” Journal of Crystal Growth , vol. 440, pp. 76-80, 2016
22. S. W. Ge, B. Z. Zhang, C. T. Yang, “Characterization of Er-doped AlN films prepared by RF magnetron sputtering,” Surface and Coatings Technology, vol. 358, pp. 404-408, 2019
23. L. X. Chen, H. Liu, S. Liu, C. M. Li, Y. C. Wang, K. An, C. Y. Hua, J. L. Liu, J. J. Wei, L. F. Hei, F. X. Lv,“Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering,” Applied Surface Science , vol. 431, pp. 152-159, 2018
24. M. K. Reusch, S. B. Cherneva, Y. Lu, A. Žukauskaitė, L. Kirste, K. Holc, M. R. Datcheva, D. T. Stoychev, V. D. Lebedev, O. L. Ambacher, “Microstructure and mechanical properties of stress-tailored piezoelectric AlN thin films for electro-acoustic devices,” Applied Surface Science , vol. 407, pp. 307-314, 2017
25. P. L. Pobedinskas, J. C. Bolsée, W. Dexters, B. Ruttens, V. C. Mortet, J. D'Haen, J. V. Manca, K. Haenen, “Thickness dependent residual stress in sputtered AlN thin films,” Thin Solid Films , vol. 522, pp. 180-185, 2012
26. S. K. Khan, M. Shahid, A. Mahmood, A. Shah, I. Ahmed, M. Mehmood, U. Aziz, Q. Raza, M. Alam,“Texture of the nano-crystalline AlN thin films and the growth conditions in DC magnetron sputtering,” Progress in Natural Science: Materials International , vol. 25, no. 4, pp. 282-290, 2015
27. P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, F. Jose, S. Dash, K. Suzuki, H. Suematsu, “Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique,” Materials Chemistry and Physics , vol. 200, pp. 78-84, 2017
28. S. Marauska, T. Dankwort, H. J. Quenzer, B. Wagner,” Sputtered thin film piezoelectric aluminium nitride as a functional MEMS material and CMOS compatible process integration,” Procedia Engineering , vol. 25,pp. 1341-1344, 2011
29. M. A. Moreira, I. Doi, J. F. Souza, J. A. Diniz, “Electrical characterization and morphological properties of AlN films prepared by dc reactive magnetron sputtering,” Microelectronic Engineering , vol. 88, no. 5, pp. 802-806, 2011
30. J. G. Rodríguez-Madrid, G. F. Iriarte, D. Araujo, M. P. Villar, O. A. Williams, W. Müller-Sebert, F. Calle, “Optimization of AlN thin layers on diamond substrates for high frequency SAW resonators,” Materials Letters , vol. 66, no. 1, pp. 339-342, 2012
31. 吳朗, "電子陶瓷-壓電" 全欣科技圖書, vol. 7, pp. 16-20, 1994.
32. A. Albarbar, S. Mekid, A. Starr, and R. Pietruszkiewicz, “Suitability of MEMS Accelerometers for Condition Monitoring: An experimental study,” Sensors, vol. 8, no. 2, pp. 784 - 789, 2008.
33. S. Kavitha, R. J. Daniel, K. Sumangal “A simple analytical design approach based on computer aided analysis of bulk micromachined piezoresistive MEMS accelerometer for concrete SHM applications,” Measurement , vol. 46, no. 9, pp. 3372-3388, 2013
34. S. Sinha, S. Shakya, R. Mukhiya, R. Gopal, and B. D Pant, “Design and Simulation of MEMS Differential Capacitive Accelerometer, ” ISSS International Conference on Smart Materials, 2014.
35. X. S. Dong, Q. W. Huang, W. Xu, B. Tang, S. H. Yang, J. H. Zhu, Y. F. En, “Research on temperature characteristic of parasitic capacitance in MEMS capacitive accelerometer,” Sensors and Actuators A: Physical , vol. 285, pp. 581-587, 2019
36. J. Y. Wang, T. T. Wang, and H. Guo, “A New Design of a Piezoelectric Triaxial Micro-Accelerometer,” Key Engineering Materials, vol. 645-646, pp. 841-846, 2015.
37. J. H. Kim, L. Wang, S. M. Zurn, L. Li, Y. S. Yoon, and D. L. Polla, “Fabrication process of pzt piezoelectric cantilever unimorphs using surface micromachining,” Integrated Ferroelectrics, vol. 15, no. 1-4, pp. 325-332, 2006.
38. A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, R. Lou-Moller, E. V. Thomsen, and K. Birkelund, "MEMS-based thick film PZT vibrational energy harvester," IEEE 24th International Conference on Micro Electro Mechanical Systems, pp. 125-128, 2011.
39. K. Kunz, P. Enoksson, and G. Stemme, “Highly sensitive triaxial silicon accelerometer with integrated PZT thin film detectors,” Sensors and Actuators A: Physical, vol. 92, no. 1, pp. 156-160, 2001.
40. Q.-M. Wang, Z. Yang, F. Li, and P. Smolinski, “Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling,” Sensors and Actuators A: Physical, vol. 113, no. 1, pp. 1-11, 2004.
41. Q. Zou, W. Tan, E. S. Kim, and G. E. Loe, “Single- and Triaxis Piezoelectric-Bimorph Accelerometers,” Journal of Microelectromechanical Systems, vol. 17, no. 1, pp. 45-57, 2008.
42. C. C. Hindrichsen, N. S. Almind, S. H. Brodersen, R. Lou-Møller, K. Hansen, and E. V. Thomsen, “Triaxial MEMS accelerometer with screen printed PZT thick film,” Journal of Electroceramics, vol. 25, no. 2-4, pp. 108-115, 2010
43. R. h. Han, J. y. Wang, M. h. Xu, and H. Guo, "Design of a tri-axial micro piezoelectric accelerometer," Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 66-70, 2016.
44. H. Zhou, R. h. Han, M. h. Xu, and H. Guo, "Study of a piezoelectric accelerometer based on d33 mode," Symposium on Piezoelectricity, Acoustic waves, and Device Applications, pp. 61-65, 2016.
45. W. Li-Peng, R. A. Wolf, W. Yu, K. K. Deng, L. Zou, R. J. Davis, and S. Trolier-McKinstry, “Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers,” Journal of Microelectromechanical Systems, vol. 12, no. 4, pp. 433-439, 2003.
46. H. G. Yu, L. Zou, K. Deng, R. Wolf, S. Tadigadapa, and S. Trolier-McKinstry, “Lead zirconate titanate MEMS accelerometer using interdigitated electrodes,” Sensors and Actuators A: Physical, vol. 107, no. 1, pp. 26-35, 2003.
47. C. C. Hindrichsen, J. Larsen, E. V. Thomsen, K. Hansen, and R. Lou-Moller, "Circular piezoelectric accelerometer for high band width application," IEEE SENSORS Conference, pp. 475-478, 2009
48. G. Yugandhar, G. Venkateswara Rao, and K. Srinivasa Rao, “Modeling and Simulation of Piezoelectric MEMS Sensor,” Materials Today: Proceedings, vol. 2, no. 4-5, pp. 1595-1602, 2015.
49. B. Yaghootkar, S. Azimi, and B. Bahreyni, "Wideband piezoelectric mems vibration sensor," IEEE SENSORS Conference, pp. 1-3, 2016.
50. H. D. Chen, K. R. Udayakumar, L. E. Cross, J. J. Bernstein, and L. C. Niles, “Dielectric, ferroelectric, and piezoelectric properties of lead zirconate titanate thick films on silicon substrates,” Journal of Applied Physics, vol. 77, no. 7, pp. 3349-3353, 1995.
51. D. L. DeVoe, and A. P. Pisano, “Surface micromachined piezoelectric accelerometers (PiXLs),” Journal of Microelectromechanical Systems, vol. 10, no. 2, pp. 180-186, 2001.
52. S. Shanmugavel, K. Yao, T. D. Luong, S. R. Oh, Y. Chen, C. Y. Tan, A. Gaunekar, P. H. Y. Ng, and M. H. L. Li, “Miniaturized acceleration sensors with in- plane polarized piezoelectric thin films produced by micromachining,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 11, pp. 2289-2296, 2011.
53. N. N. Hewa-Kasakarage, D. Kim, M. L. Kuntzman, and N. A. Hall, “Micromachined Piezoelectric Accelerometers via Epitaxial Silicon Cantilevers and Bulk Silicon Proof Masses,” Journal of Microelectromechanical Systems, vol. 22, no. 6, pp. 1438-1446, 2013.
54. H. C. Hsu, G. M. Hsu, Y. S. Lai, Z. C. Feng, S. Y. Tseng, A. Lundskog, U. Forsberg, E. Janzén, K. H. Chen, and L. C. Chen,” Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects,” Applied Physics Letters, vol. 101, no. 12, pp. 121902, 2012
55. H. W. Zan, C. W. Chou, C. H. Wang, K. H. Yen and J. C. Hwang,” Pentacene Patterning on Aluminum Nitride by Water Dipping” Journal of The Electrochemical Society, vol. 155, no. 11, pp. 321-325, 2008
56. M. Kazan, B. Rufflé, C. Zgheib and P. Masri, “Oxygen behavior in aluminum nitride,” Journal of Applied Physics, vol. 98, no. 10, pp.103529, 2005
57. J. C. Caicedo, J. A. Pérez and W. Aperador,” AlN film deposition as a semiconductor device : Deposición de películas de AlN como dispositivos semiconductore,” INGENIERÍA E INVESTIGACIÓN, vol. 33, no. 2, pp.16-23, 2013
58. F. Jose, R. Ramaseshan, S. Dash, S. Bera, A.K. Tyagi, B. Raj,”Response of magnetron sputtered AlN films to controlled atmosphere annealing,” Journal of Physics D: Applied Physics, vol. 43, no. 075304, 2010
59. S. A. Anggraini, M. Uehara, H. Yamada and M. Akiyama,” Mg and Ti codoping effect on the piezoelectric response of aluminum nitride thin films,”Scripta Materialia, vol. 159,no. 15, pp. 9-12, 2019
60. I. L. Guy, S. Muensit and E. M. Goldys,” Extensional piezoelectric coefficients of gallium nitride and aluminum nitride”, Applied Physics Letters, vol. 75, no.26 ,pp. 4133–4135, 1999
61. F. Martin, P. Muralt, M.A. Dubois and A. Pezous, “Thickness dependence of the properties of highly c-axis textured AlN thin films”, Journal of Vacuum Science & Technology A, vol. 22, no. 2, pp. 361-365, 2004
62. V. Mortet, M. Nesladek, K. Haenen, A. Morel, M. D'Olieslaeger and M. Vanecek,”Physical properties of polycrystalline aluminium nitride films deposited by magnetron sputtering,” Diamond and Related Materials, vol. 13, no. 4–8,pp. 1120-1124, 2004
63. A. N. Redkin, E. E. Yakimov, D. V. Roshchupkin and V. I. Korepanov,” Characterization of highly textured piezoelectric AlN films obtained from aluminum and ammonium chloride by a simple vapor deposition process,” Thin Solid Films, vol. 684, pp. 15-20, 2019
64. S. Pawar, K. Singh, S. Sharma, A. Pandey, S. Dutta and D. Kaur,” Growth assessment and scrutinize dielectric reliability of c-axis oriented insulating AlN thin films in MIM structures for microelectronics applications,” Materials Chemistry and Physics, vol. 219, pp. 74-81, 2018