| 研究生: |
林珮瑋 Lin, Pei-Wei |
|---|---|
| 論文名稱: |
奈米線構成之大範圍網狀結構與其表面增強拉曼散射光譜之研究 Large Area Nanonets Derived from Silver Nanowires and Its Application to Surface-Enhanced Raman Scattering |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 銀奈米線 、表面增強拉曼 |
| 外文關鍵詞: | silver nanowires, SERS |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究包含兩部分,第一部分是關於銀奈米線於底板上形成銀奈米網狀結構之特性研究,銀奈米線在無施加電流、化學接枝、以及其他化學改質的條件下,可在底板上自組裝地形成均勻的網狀結構。從掃描式電子顯微鏡發現ITO底板上的銀奈米網狀結構會產生孔洞;從紫外光/可見光光譜觀察到塊材銀之可見光吸收峰會隨著底板上銀奈米線的數量增加而產生藍位移(Blue shift);最後利用高溫將銀奈米線做熱處理以分析銀奈米線交聯的特性。在以上的結果可以發現銀奈米線的密度、底板材質和間距會影響表面電漿波的共振頻率。論文第二部分則是將第一部分的基板應用於Rhodamine 6G(R6G)在不同極性溶劑之偵測。從紅外光吸收光譜圖和拉曼光譜圖中發現,R6G在溶劑中的溶解度會受到極性和介電常數的影響,並且溶劑中的-OH官能基與R6G分子會產生氫鍵是分子間內聚力增大增強拉曼訊號。另外,在R6G的感測中,偵測極限可達10-9M,增顯因子可達107。拉曼訊號與R6G濃度呈現良好的線性關係,代表此增顯基板對於R6G之感測具有不錯的靈敏度與選擇性。
In this thesis, it studies on the large area nanonets derived from silver nanowires and its application to Surface-Enhanced Raman Scattering. The contents include two parts:
In first section, the nanonets derived from silver nanowires deposited on substrates was investigated and characterized. Silver nanowires would be spontaneously synthesized on substrate without any driving force such as potential, chemical grafting, surface modification. The scanning electron microscope (SEM) results revealed that the formation of holes on nanonets when the ITO glass was used as substrates. In addition, the UV/vis spectra showed that the surface plasmon resonant between silver substrate and silver nanowires. The crosslink of adjacent silver nanowires could be analyzed by annealing the nanonets. It was found that the weight flux of silver nanowires, substrate materials, and silver nanowires interval could affect the surface plasmon resonance.
In the second section, the silver nanowires and silver substrate sandwich-like structure was applied in analysis of Rhodamine 6G(R6G) interaction with different polar solvents. From the results of Infrared spectroscopy and Raman spectra, solubility could be affected by solvents polarity and dielectric constant. The hydroxyl functional group of solvents could form hydrogen bond and then it could enhance the Raman signal. In addition, in R6G sensing, it could achieve a limit of detection sensitivity of 10-9M and enhancement factor was 107. Besides, the Raman signal and R6G concentration showed a good linear relationship. This characteristic could be on behalf of the enhanced substrate had good sensitivity and selectivity in R6G sensing.
1. 吳建成,金奈米粒子之綠色合成及磁性複合奈米粒子之製備,國立成功大學化學工程學系,研究所博士論文(2010)
2. 工業材料,頁94,1999年9月
3. 柯楊船、皮特斯壯,聚合物-無機奈米複合材料,五南,台北(2004)
4. 林郁人,六硼化鑭/二氧化矽/金複合奈米粒子之製備及其光熱轉換與催化特性,國立成功大學化學工程學系,研究所碩士論文(2010)
5. C. V. Raman, K.S. Krishnan, Nature, 121, 501 (1928)
6. 莊萬發,超微粒子理論應用,復漢出版社(1995)
7. 蘇品書,超微粒子材料技術,復漢出版社(1989)
8. 林信宏,水相界面活性劑系統製備貴金屬奈米粒子之研究,國立成功大學化學工程學系,研究所碩士論文(2002)
9. Jung-Yong Lee, Stephen T. Connor, Yi Cui, and Peter Peumans, Nano Lett., 8, 689(2008)
10. Kan-Sen Chou, Kuo-Cheng Huang and Hsien-Hsuen Lee, Nanotechnology, 16, 779(2005)
11. C. Lofton and W. Sigmund, Advanced Functional Materials, 15, 1197(2005)
12. Benjamin Wiley, Yuang Sun, and Younan Xia, Acc. Chem. Res., 40, 1067(2007)
13. Yugang Sun and Younan Xia, Science, 13, 2176 (2002)
14. M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett., 26, 163 (1974).
15. B. Vlckova, I. Pavel, M. Sladkova, K. Siskova, M. Slouf, J.Mol. Struct., 42, 834(2007).
16. K. Kneipp, H. Kneipp, I. Itzkan, R. R Dasari and M. S Feld, J. Phys.: Condens. Matter., 14, R597(2002)
17. M. Kerker, D.-S. Wang, and H. Chew, Appl. Opt., 19, 3373(1980)
18. D.-S. Wang and M. Kerker, Phys. Rev. B, 24, 1777(1981)
19. H. Xu, J. Aizpurua, M. Käll, and P. Apell, Phys. Rev. E, 62, 4318(2000)
20. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, J. Phy.: Condens. Matter., 4, 1143(1992)
21. M. Fleischmann, P. J. Hendra, A. J. McQuillan, Chem. Phys. Lett., 26, 163 (1974).
22. K. Kin, K. L. Kim, and S. J. Lee, Chem. Phys.Lett., 403, 77(2005)
23. A. G. Brolo, D. E. Irish, J. Lipkowski, J. Phys. Chem. B, 101, 3906(1997).
24. C. L. Lei, C. C. Wei, M. C. Chem, S. Y. Ou, W. H. Li, and K.C. Lee, Mater Science and Engineering B, 32, 39(1995).
25. A. Kudelski, Chem. Phys. Lett., 414, 271(2005).
26. H. Watanabe, N. Hayazawa, Y. Inouye, and S. Kawata, J. Phys. Chem. B, 109, 5012 (2005).
27. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Letts., 76, 14(1996)
28. M. Udagawa, C.-C. Chou, J. C. Hemminger, and S. Ushioda , Phys. Rev. B, 23, 12 (1981).
29. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, and I. Itzkan, Phys. Rev. Lett., 78, 9 (1997)
30. J. P. Schmidt, S. E. Cross, and S. K. Buratto, J. of Chem. Phys., 121, 21(2004)
31. X. Zhan, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Dayne, IEE proc.-Nanobiotechnol., 152, 6 (2005).
32. H. Xu, J. Aizpurua, M. Kall, and P.Apell, Phys. Rev. E, 62, 3(2000)
33. J. B. Jackson , S. L. Westcott, L. R. Hirsch, J.L.West, and N. J. Halas, Appl. Phys. Lett., 82, 2(2003)
34. S. Efrima, and B. V. Bronk, J. Phys. Chem. B, 102, 5947(1998).
35. X. Zhao, and Y. Fang, J. Mol. Struct., 157, 789(2006)
36. W. Q. Ma, Y. Fang, G. L. Hao, and W. G. Wang, Chin J. Chem. Phys., 23, 659(2010)
37. Y. Badr, M. A. Mahmoud, J. Mol. Struct., 749, 187(2005).
38. Qiu, T., Wu, X. L., Shen, J. C., and Chu, P. K., Appl. Phys. Lett., 89, 131914(2006)
39. Chen H., Wang Y., Qu J., and Dong S. J., Raman Spectrosc., 38, 1444(2007)
40. Sakano T., Tanaka Y., Nishimura R., Nedyalkov N. N., Atanasov, and P. A., Saiki T., J. Phys. D: Appl. Phys., 41, 235304(2008)
41. Duan, G. T., Cai, W. P., Luo, Y. Y., Li, Z. G., and Li, Y. Appl. Phys. Lett., 89, 211905(2006)
42. Zhou, Q., Li, Z., Yang, Y., and Zhang, Z., J. Phys. D: Appl. Phys., 41, 152007(2008)
43. Galopin, E., Barbillat, J., and Coffinier, Y., ACS Appl. Mater. Interfaces, 1, 1396 (2009)
44. Liu, Y.-C., Yu, C.-C., Sheu, S.-F., J. Mater. Chem., 16, 3546(2006)
45. Gutes, A., Carraro, C., Maboudian, R., ACS Appl. Mater. Interfaces, 1, 2551(2009)
46. Liu, Y.-C., Yu, C.-C., Hsu, T.-C., Electrochem. Commun., 9, 639(2007)
47. Wei-Han Hsiao, Hsin-Yu Chen, Yu-Cheng Yang, Yu-Liang Chen, Chi-Young Lee, and Hsin-Tien Chiu, ACS Appl. Mater. Interfaces, 3, 3280(2009)
48. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Letters, 3, 1087(2003).
49. Linda Gunnarsson, Tomas Rindzevicius, JurisPrikulis, BengtKasemo, Mikael Käll, ShengliZou, and George C. Schatz, J. Phys. Chem., B, 109, 1079(2005).
50. Vladimir P. Drachev, Mark D. Thoreson, Vishal Nashine, Eldar N. Khaliullin, Dor Ben-Amotz, V. Jo Davisson and Vladimir M. Shalaev, J. Raman Spectrosc., 36, 648(2005).
51. Steven R. Emory, William E. Haskins, and ShumingNie, J. Am. Chem. Soc., 120, 8009(1998).
52. Chen-Han Huang, Hsing-Ying Lin, Hsiang-Chen Chui, Yun-Chiang Lan, and Shi-Wei Chu, Optics Express, 16, 9571(2008)
53. Harald Ditlbacher, Phys. Rev. Lett., 95, 257403(2005)
54. Garry P. Glaspell, Chen Zuo, and Paul W. Jagodzinski, Journal of Cluster Science, 6, 39(2005)
55. Camargo PH, Au L, Rycenga M, Li W, and Xia Y., Chem Phys Lett., 484, 304(2010)
56. Pedro H C Camargo, Claire M Cobley, Matthew Rycenga and Younan Xia, Nanotechnology, 20, 434020(2009)
57. Wang, H. H., Liu, C. Y., Wu, S. B., Liu, N. W., Peng, C. Y., Chan, T. H., Hsu, C. F., Wang, J. K., and Wang, Y. L., Adv. Mater., 18, 491(2006)
58. Lee, S. J., Morrill, A. R., Moskovits, M., J. Am. Chem. Soc., 128, 2200(2006)
59. Tao, A., Kim, F., Hess, C., Goldberger, J., He, R., Sun, Y., Xia, Y., and Yang, P., Nano Lett., 3, 1229(2003)
60. Liu, Y. J., Chu, H. Y., and Zhao, Y. P., J. Phys. Chem. C, 114, 8176(2010)
61. Sun, Y., and Wiederrecht, and G. P., Small, 3, 1964(2007)
62. Lin, H., Mock, J., Smith, D., Gao, T., and Sailor, M. J., J. Phys. Chem. B, 108, 11654 (2004)
63. Wen, X., Xie, Y.-T., Mak, W. C., Cheung, K. Y., Li, X.-Y., Renneberg, R., and Yang, S., Langmuir, 22, 4836(2006)
64. Song, W., Cheng, Y., Jia, H., and Xu, W., Zhao, B., J. Colloid Interface Sci., 298, 765(2006)
65. Gutés, A., Carraro, C., and Maboudian, and R. J. Am. Chem. Soc., 132, 1476(2010)
66. Rashid, H., and Mandal, T. K. J. Phys. Chem. C, 111, 16750(2007)
67. Qin, L. D., Zou, S. L., Xue, C., Atkinson, A., Schatz, G. C., Mirkin, C. A., Proc. Natl. Acad. Sci. U.S.A., 103, 13300(2006)
68. Nie, S., and Emory, S. R., Science, 275, 1102(1997)
69. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., Feld, M. S., Phys. Rev. Lett., 78, 1667(1997)
70. Wilson, R., Bowden, S. A., Parnell, J., and Cooper, J. M., Anal. Chem., 82, 2119(2010)
71. F. J. Garcia-Vidal, and J. B. Pendry, Phys. Rev. Lett., 77,1163(1996)
72. Andrea R. Tao, and Peidong Yang, J. Phys. Chem. B, 109, 15687(2005)
73. Nathan L. Netzer, Ray Gunawidjaja, Marie Hiemstra, Qiang Zhang, Vladimir V. Tsukruk, and Chaoyang Jiang, ACS nano, 3,1795(2009)
74. James A. Hutchison, Silvia P. Centeno, Hideho Odaka, Hiroshi Fukumura, Johan Hofkens, and Hiroshi Ujii, Nano Letters, 9, 995(2009)
75. Sun, Y., and Xia, Y., AdV. Mater., 14, 833(2002)
76. Robert D. Deegan, Olgica Bakajin, Todd F. Dupont, Greb Huber, Sidney R. Nagel and Thomas A. Witten, Nature, 389, 827 (1997)
77. Dickson, R. M., Lyon, L. A., J. Phys. Chem. B, 104, 6095(2000)
78. Alvaro Mayoral, Lawrence F. Allard, Domingo Ferrer, Rodrigo Esparza, and Miguel Jose-Yacaman, J. Mater. Chem., 21, 893(2011)
79. F.L. Arbeloa, T.L. Arbeloa, M.J.T. Estévez, and I.L. Arbeloa, J. Phys. Chem., 95, 2203(1991)
80. F.L. Arbeloa, A. Costela, I.L. Arbeloa, J. Photochem. Photobiol. A, 55, 97(1990)
81. A. Sharma, S. Kaur, C.G. Mahajan, S.K. Tripathi, G.S.S. Saini, Mol. Phys., 105, 117(2007)
82. G.S.S. Saini, Amit Sharma, Sarvpreet Kaur, K.S. Bindra, Vasant Sathe, S.K. Tripathi, and C.G. Mhahajan, Journal of Molecular Structure, 931, 10(2009)
校內:2017-07-28公開