| 研究生: |
薛懷斌 Hsueh, Huai-Bin |
|---|---|
| 論文名稱: |
以反應型水滑石層狀材料製備水滑石/高分子奈米複合材料與其性質之研究 Study on the Preparation and Properties of the LDHs/Polymer Nanocomposites with the Reactive LDHs |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 水滑石 、脫層 、插層 、奈米複合材料 、聚醯亞胺 、環氧樹脂。 |
| 外文關鍵詞: | LDHs, exfoliation, intercalation, nanocompoites, polyimide, epoxy resin。 |
| 相關次數: | 點閱:133 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以共沈澱法製備插層對苯胺酸分子之有機水滑石。對苯胺酸以離子鍵結接枝於水滑石層板,可將原本親水的無機層板改質為疏水的層板,以利在製備水滑石/高分子複合材料時,水滑石易分散於有機分子或有機溶劑中。此外,對苯胺酸插層之水滑石的層間距達15Å,比未改質的水滑石層間距7.8Å高出約一倍,有利於有機分子或有機溶劑滲透或擴散至水滑石層板間,待高分子鏈成長完全時,可得到插層型或脫層型之水滑石/高分子奈米複合材料 。此外,本研究使用對苯胺酸作為水滑石層板的插層劑另一個重要的目的為增進無機水滑石層板與有機高分子基材間的相容性。因插層劑帶有胺基官能基,可與本研究所選用的高分子產生化學鍵結,所以可以透過對苯胺酸分子連結無機與有機兩相,增進兩相之相容性。本研究採用的高分子分別為鏈狀結構聚醯亞胺高分子與網狀結構的環氧樹脂高分子,再以插層對苯胺酸分子之有機水滑石作為無機補強材來製備具極佳相容性與脫層型之水滑石/聚醯亞胺奈米複合材料與水滑石/環氧樹脂奈米複合材料。
透過二階段溶液聚合法可以得到具相容性的脫層型與插層型之水滑石/聚醯亞胺奈米複合材料。添加5 wt%水滑石所形成的水滑石/聚醯亞胺奈米複合材料之拉伸強度比純聚醯亞胺高出43%,添加4 wt%水滑石所形成的水滑石/聚醯亞胺奈米複合材料之拉伸率比純聚醯亞胺高出63%。因水滑石添加可補強高分子基材之剛性,所以水滑石/聚醯亞胺奈米複合材料之楊氏模數與儲存模數隨水滑石添加量增加而增加。添加10 wt%水滑石所形成的水滑石/聚醯亞胺奈米複合材料之玻璃轉移溫度比純聚醯亞胺高出31℃。添加10 wt%水滑石所形成的水滑石/聚醯亞胺奈米複合材料玻璃轉移溫度前的熱膨脹係數比純聚醯亞胺下降69.8%,玻璃
轉移溫度後的熱膨脹係數比純聚醯亞胺下降97.39%。添加10 wt%水滑石所形成的水滑石/聚醯亞胺奈米複合材料之裂解溫度比純聚醯亞胺高出42℃(5 wt% weight loss)與47℃(10 wt% weight loss)。
先將EPON 828分子預插層至水滑石層間,再加入DDM交聯劑進行交聯反應後可得到具相容性之脫層型水滑石/環氧樹脂奈米複合材料。添加10 wt%水滑石所形成的水滑石/環氧樹脂奈米複合材料之拉伸強度比純環氧樹脂高出27%,添加7 wt%水滑石所形成的水滑石/環氧樹脂奈米複合材料之拉伸率比純環氧樹脂高出35%。因水滑石添加可補強高分子基材之剛性,所以水滑石/環氧樹脂奈米複合材料之楊氏模數與儲存模數隨水滑石添加量增加而增加。添加7 wt%水滑石所形成的水滑石/環氧樹脂奈米複合材料之玻璃轉移溫度比純環氧樹脂高出23℃。添加10 wt%水滑石所形成的水滑石/環氧樹脂奈米複合材料玻璃轉移溫度前的熱膨脹係數比純環氧樹脂下降26%,玻璃轉移溫度後的熱膨脹係數比純環氧樹脂下降13.4%。添加10 wt%水滑石所形成的水滑石/環氧樹脂奈米複合材料之裂解溫度比純環氧樹脂高出18℃。
In this study, amino benzoate intercalated LDHs (LDHs-AB) were prepared by coprecipitation method. The amino benzoate, grafted on the LDHs nanolayer through ionic bond, converts the hydrophilic LDHs into the hydrophobic LDHs. This organo-modified process makes the LDHs to well disperse in the organic monomers or solvents. In addition, one-fold increase in the d-spacing of the amino benzoate intercalated LDHs (15) was obtained as compared to that of carbonate intercalated LDHs. The enlargement of the LDHs gallery space allow the organic monomers or solvents to diffuse or penetrate into the LDHs galleries, leading to the formation of the intercalated or exfoliated LDHs/polymer nanocomposites after the completion of the polymerization. Furthermore, the amino group from the intercalated amino benzoate can react with polymer to generate the strong chemical bond, resulting in the enhancement on the compatibility between the inorganic LDHs and organic polymer. In this study, the polymers used for the preparation of the nanocomposites were linear polyimide and cross-linking epoxy resin, and the amino benzoate intercalated LDHs were chosen as the inorganic filler to prepare the excellently compatible and exfoliated LDHs/polyimide nanocomposites and LDHs/epoxy nanocomposites.
By two-steps polymerization, the compatible and exfoliated/intercalated LDHs/polyimide nanocomposites were obtained. With the 5 wt% LDHs-AB loading, the tensile strength of the LDHs/polyimide is 43% higher than that of pristine polyimide. With the 4 wt% LDHs-AB loading, the elongation-at-break of the LDHs/polyimide is 63% higher than that of pristine polyimide. Owing to the enhancement of the stiffness of the polymer matrix by the incorporation of the LDHs-AB, the Young’s modulus and storage modulus of the LDHs/polyimide nanocomposites increased with the LDHs-AB content. With the 10 wt% LDHs-AB loading, the glass transition temperature of the
LDHs/polyimide is 31℃ higher than that of pristine polyimide. With the 10 wt% LDHs-AB loading, the coefficient of the thermal expansion bellow Tg of the LDHs/polyimide is 69.8% lower than that of pristine polyimide, and the coefficient of the thermal expansion above Tg of the LDHs/polyimide is 97.39% lower than that of pristine polyimide. With the 10 wt% LDHs-AB loading, the decomposition temperature of the LDHs/polyimide is 42 ℃ (5 wt% weight loss) and 47℃ (10 wt% weight loss) higher than that of pristine polyimide.
After the pre-intercalation of the EPON 828 resin into the LDHs-AB galleries, the curing agent DDM was added to perform the cross-linking polymerization, leading to the formation of the compatible and exfoliated LDHs/epoxy nanocomposites. With the 10 wt% LDHs-AB loading, the tensile strength of the LDHs/epoxy is 27% higher than that of pristine epoxy resin. With the 7 wt% LDHs-AB loading, the elongation-at-break of the LDHs/epoxy is 35% higher than that of pristine epoxy resin. Owing to the enhancement of the stiffness of the polymer matrix by the incorporation of the LDHs-AB, the Young’s modulus and storage modulus of the LDHs/epoxy nanocomposites increased with the LDHs-AB content. With the 7 wt% LDHs-AB loading, the glass transition temperature of the LDHs/epoxy is 23℃ higher than that of pristine epoxy resin. With the 10 wt% LDHs-AB loading, the coefficient of the thermal expansion bellow Tg of the LDHs/epoxy is 26% lower than that of pristine epoxy resin, and the coefficient of the thermal expansion above Tg of the LDHs/epoxy is 13.4% lower than that of pristine epoxy resin. With the 10 wt% LDHs-AB loading, the decomposition temperature of the LDHs/epoxy is 18℃ (5 wt% weight loss) higher than that of pristine epoxy resin.
1. Messersmith, P. B.; Stupp, S. I. J. Mater. Res. 1992, 7, 2599.
2. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigatio, O. J. Mater. Res. 1993, 8, 1179.
3. Okada, A.; Usuki, A. Mater. Sci. Eng. 1995, C3, 109.
4. Giannelis, E. P. Adv. Mater. 1996, 8, 29.
5. Gilman, J. W. Appl. Clay Sci. 1999, 15, 31.
6. Vaia, R. A.; Price, G.; Ruth, P. N.; Nguyen, H. T.; Lichtenhan, J. Appl. Clay Sci. 1999, 15, 67.
7. Okada, A; Kawasumi, M.; Usuki, A,; Kojima, Y.; Kurauchi, T.; Kamigaito, O. Mater. Res. Soc. Symp. Proc. 1990, 171, 45.
8. Okada, A; Kawasumi, M.; Kurauchi, T.; Kamigaito, O. Polym. Prepr. 1987, 28, 447.
9. Kojima, Y.; Usuki, A,; Kawasumi, M.; Okada, A; Kurauchi, T.; Kamigaito, O. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 983.
10. 張玉龍; 李長德, 奈米技術與奈米塑料, 中國輕工業出版社, 2002年1月.
11. Lan, T.; Pinnavaia, T. J. Chem. Mater. 1994, 6,2216.
12. Lan, T.; Kaviratna P. D.; Pinnavaia, T. J. Chem. Mater. 1995, 7, 2144.
13. Komarneni, S. J. Mater. Chem. 1992, 2, 1219.
14. Roy, R.; Komarneni, S.; Roy, D. M. Mater. Res. Soc. Symp. Proc. 1984. 22. 347.
15. Wen, J.; Wilkes, G. L. Chem. Mater. 1996, 8, 1667.
16. Godovsky, D. Y. Adv. Polym. sci. 1995, 119, 79.
17. Novak, B. M. Adv. Mater. 1993, 5, 422.
18. Yokota, R.; Horiuchi, R.; Kochi, M.; Soma, H; Mita, I. J. Polym. Sci.: Polym Lett. 1988, 26, 215.
19. Chujo, Y. Makromol. Chem. Macromol. Symp. 1991, 42/43, 303.
20. Mascia, L.; Kioul, A.; Polym. 1995, 36, 3649.
21. Harmer, M. A.; Farneth, W. E.; Sun, Q. J. Am. Chem. Soc. 1996, 118, 7708.
22. Tamki, R.; Naka, K.; Chujo, Y. Polym. Bull. 1997, 39, 303.
23. Imai, Y.; Yoshida, N.; Chujo, Y, Polym, J. 1999, 31, 258.
24. Akelah, A.; Moet, A. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1994. 55, 153.
25. Zilg, C.; Thompson, R.; Millhaupt, R.; Finter, J. Adv. Mater, 1999, 11, 49.
26. Pinnavaia, T. J.; Beall, G. W. Polymer-Clay Nanocomposites; john Wiley & Sons: New York, 2000.
27. 蔡宗燕, 工業材料, 1997年, 125期, 120頁.
28. Occelli, M. L.; Robson, H. Expanded Clays and Other Microporous Solids; Van Nostrand Reinhold: New York, 1992.
29. Allmann, R. Acta Cryst. 1968, B24, 972.
30. Frondel, A. Am. Mineral. 1941, 26, 295.
31. Ross, G. J.; Kodama, H. Am. Mineral. 1967, 52, 1036.
32. Brown, G.; Gastuche, M. C. Clay Miner. 1967, 7, 193.
33. Gastuche, M. C.; Herbillon, A. Bull. Soc. Chim. Fr. 1962, 16, 1404.
34. Taylor, R. M. Clay Miner. 1984, 19, 591.
35. Miyata, S. Clays Clay Miner. 1975, 23, 369.
36. Feitknecht, W. Helv. Chim. Acta 1942, 25, 131
37. Feitknecht, W. Helv. Chim. Acta 1942, 25, 555
38. Reichle, W. T. Chemtech. 1986, 16, 58.
39. Reichle, W. T. J. Catal. 1985, 94, 547.
40. Suzuki, E.; Ono, Y. Bull. Chem. Soc. Jpn. 1988, 61, 1008.
41. Twu, J.; Dutta, P. J. Phys. Chem. 1989, 93, 7863.
42. Constantino, V. R. L.; Pinnavaia, T. J. Inorg. Chem. 1995, 34, 883.
43. Bone, J. S., Ph. D. Thesis, University of exert,1995.
44. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.
45. Borja, M.; Dutta, P. K. Langmuir 1996, 12, 402.
46. Miyata, S. Clays Clay Miner. 1980, 28, 50.
47. Miyata, S. Clays Clay Miner. 1983, 31, 305.
48. Miyata, S.; Okada, A. Clays Clay Miner. 1977, 25, 14.
49. Miyata, S.; Kumura, T. Chem. Lett. 1975, 843.
50. Ulibarri, M. A.; Labajos, F. M. Inorg. Chem. 1994, 33, 2592.
51. Drezdzon, M. A. Inorg. Chem. 1998, 27, 4628.
52. Narita, E.; Kaviratra, P.; Pinnavaia, T. J. Chem. Lett. 1991, 805.
53. Carlino, S.; Hudson, M. J.; Husain, S. W.; Knowles, J. A. Solid State Ionics 1996, 84, 117.
54. Hansen, H. C. B.; Taylor R. M. Clay Miner. 1991, 26, 311.
55. Dimotakis, E. D.; Pinnavaia, T. J. Inorg. Chem. 1990, 23 2393.
56. Borja, M.; Dutta, P. K. J. Phys. Chem. 1992, 96, 5434.
57. Slade, R. C. T.; Barker, J.; Hirst, P. R.; Hilstead, T. K. Solid State Ionics 1987, 24, 289.
58. Aranda, P. Ph. D. Thesis, Universidad Complutense, Madrid, 1991.
59. Tanaka, M.; Park, I. Y.; Kuroda, K.; Kayo, C. Bull. Chem. Soc. Jpn. 1989, 62, 3442.
60. Oriakhi, C. O.; Farr, I. V.; Lerner, M. M. J. Mater. Chem. 1996, 6, 103.
61. Wilson, Jr. O. C.; Olorunyolemi, T.; Jaworski, A.; Borum, L.; Young, D.; Siriwat, A.; Dickens, E.; Oriakhi, C. O.; Lerner, M. M. Appl. Clay Sci. 1999, 15, 265.
62. Sugahara, Y.; Yokoyama, N.; Kuroda, K.; Kato, C. Ceram. Int. 1988, 14, 163.
63. Bogert, M. T.; Renshaw, R. R. J. Am. Chem. Soc. 1908, 30, 1140.
64. Edward, W. M.; Robinsin, I. M. British Pat. 570853; U.S. Pat. 2710853, 1955.
65. Ghosh, M. K.; Mittal, K. L. Polyimides: Fundamental and applications, Marcel Dekker, 1996.
66. 林金雀, 聚醯亞胺樹脂在電子產業之應用, 化工資訊月刊, 1999, Vol. 13, No. 8, 29.
67. 劉怡君, 新配向技術, 工業材料, 1999, No. 156, 98.
68. Mittal, K. L., editor. Polyimides: synthesis, characterization and application, vols. Ⅰand Ⅱ.New York: Plenum Press 1984.
69. 顏慶山, 全芳香族聚醯亞胺的加工與應用, 高分子工業, 1998, No. 77, 73.
70. 王其仁, 謝玉英, 配向膜材料及應用技術, 工業材料, 2000, No. 166, 125.
71. Bessonov, M. I.; Koton, M. M.; Kudravtsev, V. V.; Laius L. A. Polyimides: Thermal Stable Polymers, Plenum, New York, 1987.
72. Dine-Hart, R. A.; Wright, W. W. J. Appl. Polym. Sci. 1967, 11, 609.
73. Takekoshi, T.; Kochanowski, J. E. U.S. Pat. 3833546, 1974.
74. Takekoshi, T.; Kochanowski, J. E. U.S. Pat. 3905942, 1975.
75. Gresham, W. F.; Naylor, M. A. U.S. Pat. 2731447, 1956.
76. Serafini, T. T.; Delvigs, P.; Lightsey G. R. NASA Technical Note D-6611, 1972.
77. Serafini, T. T.; Delvigs, P.; Alston, W. B. PMR-15 Polyimides Review and Update, NASA TM-82821, 1982.
78. Meyers, R. A. Am. Chem. Soc. Polym. Prepr. 1969, 10, 186.
79. Alvino, W. M.; Edelman, L. E. J. Appl. Polym. Sci. 1975, 19, 2961.
80. Khune, G. D. J. Macromol. Sci. Polym. Chem. Ed. 1980, 18, 1905.
81. Young, P. R.; Chang, A. C. J. Polym. Sci.: Part A Polym. Chem. 1990, 28, 3107.
82. Malinge, J.; Garapon, J.; Sillion, B. British Polym. J. 1988, 20, 431.
83. Lee, H. J. J. Polym. Sci.: Part A Polym. Chem. 1998, 36, 301.
84. Moy, T. M.; Mcgrath, J. E. J. Polym. Sci.: Part A Polym. Chem. 1994, 32, 1903.
85. Chen, T.; Jen, A. K.; Cai, Y. Macromolecules 1996, 29, 535.
86. Lee, Y. D.; Lu, C. C.; Lee, H. R. J. Appl. Polym. Sci. 1990, 41, 877.
87. Sbramamian, P.; Sriniresam, M. J. Polym. Sci.: Part A Polym. Chem. 1988, 26, 1553.
88. Haider, M.; Chenevey, E.; Vora, R. H.; Cooper, W.; Glick, M.; Jaffe, M. Mater. Res. Soc. Symp. Proc. 1991, 227, 379.
89. Morikawa, A.; Iyoku, Y.; Kakimoto, M.; Imai, Y. Polym. J. 1992, 24, 107.
90. Kioul, A.; Mascia, L. J. Non. cryst. Solids 1994, 175, 169.
91. Mascia, L.; Kioul, A. Polym. 1995, 36, 3649.
92. Xenopoulos, C.; Mascia, L.; Shaw, S. T. Mater. Sci. Eng. 1998, C6, 99.
93. Nunes, S. P.; Peinemann, K. V.; Ohlrogge, K.; Alpers, A.; Keller, M.; Pires, A. T. N. J. Membr. Sci. 1999, 157, 219.
94. Chen, Y.; Iroh, J. O. Chem. Mater. 1998, 11, 1218.
95. Cornelius, C. J.; Marand, E. Polym. 2002, 43, 2385.
96. Fukushima, Y.; Inagaki, S. J. Inclusion Phenom. 1987, 5, 473.
97. Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci.: Part A Polym. Chem. 1993, 31, 2493.
98. Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Polym. Sci.: Part A Polym. Chem. 1993, 31, 2493.
99. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem. Mater. 1994, 6, 573.
100. Yang, Y.; Zhu, Z. K.; Yin, J.; Wang, X. Y.; Qi, Z. E. Polym. 1999, 40, 4407.
101. 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 1992.
102. Browning, C. E. Polym. Eng. Sci. 1987, 18, 16.
103. Wang, C. S; Lin, C. H. J. Appl. Polym. Sci. 2000, 75, 429.
104. Tanaka, Y. Epoxy Resins: Chemisty and Technology May, C. A. Ed.; Marcel Dekker: New York, 1998.
105. 王春山, 環氧樹脂簡介與最近的發展, 工業技術, 1995, 第三卷, 第一期.
106. Sultan, J. N., McGarry, F. J. J. Appl. Polym. Sci. 1973, 13, 29.
107. Drake, R. Polym. Mater. Sci. Eng. 1990, 63, 802.
108. Bucknall, C. B.; Yoshi, T. British, Polym. J. 1978, 10, 53.
109. Kim, D. H.; Kin, S. C. J. Appl. Polym. Sci. 1991, 31, 289.
110. Vazquez, A.; Rojas, A. J.; Adabbo, H. E.; Borrajo, J.; Williams, J. J. Polym. 1987, 28, 1156.
111. Verchere, D.; Pascault, J. P.; Sautereau, H.; Moschiar, S. M. Riccardi, C. C.; Wiliiams, J. J. J. Appl. Polym. Sci. 1991, 43, 293.
112. Verchere, D.; Sautereau, H.; Pascault, J. P. J. Appl. Polym. Sci. 1990, 41, 467.
113. Hedrick, J. L.; Yilgor, I.; Wilkes, G. L.; McGrath, J. E. Polym. Bull. 1985, 13, 201.
114. Cecere, J. A.; McGrath, J. E. Polym. Prepr. 1986, 27,299.
115. Bucknall, C. B.; Gomez, C. M.; Quintard, I. Polym. 1994, 35, 353.
116. Bucknall, C. B.; Gilbert, A. H. Polym. 1989, 34, 213.
117. Hourston, D. J.; Lane, J. M. Polym. 1992, 33, 1379.
118. Chen, M. C.; Hourston, D. J.; Sun, W. B. Eur. Polym. J. 1992, 28, 1471.
119. Ohsako, T.; Nagura, K.; Nozue, I. Polym. 1993, 34, 5080.
120. Woo, E. M.; Bravebce, L. D.; Seferis, J. C. Polym. Eng. Sci. 1994, 34, 1664.
121. Janis, M. B.; Curliss, D.; Vaia, R. A.; Chem. Mater. 2000, 12, 3376.
122. Chin, I. J.; Albrecht, T. T.; Kim, H. C.; Russell, T. P.; Wang, J. Polym. 2001, 42, 5947.
123. Kornmann X.; Lindberg, H.; Berglund L. A. Polym. 2001, 42, 4493.
124. Triantafillidis, C. S.; LeBaron, P. C.; Pinnavaia, T. J. Chem. Mater. 2002, 14, 4088.
125. Chen, J. S.; Poliks, M. D.; Ober, C. K.; Zhang, Y.; Wiesner, U.; Giannelis, E. Polym. 2002, 43, 4895.
126. Becker, O.; Varley, R.; Simon, G. Polym. 2002, 43, 4365.
127. Park, J. H.; Jana, S. C. Mocromolecules 2003, 36, 2758.
128. Harreld, J. H.; Su, K.; Katsoulis, D. E.; Suto, M.; Stucky, G. D. Chem. Mater. 2002, 14, 1174.
129. Kong, D.; Park, C. E. Chem. Mater. 2003, 15, 419.
130. Carlino, S.; Hudson, M. J. J. Mater. Chem. 1994, 4, 99.
131. 何漢宗, 王春山, 低應力半導體封裝用環氧樹脂之研究.