| 研究生: |
李國煌 Li, Kuo-Huang |
|---|---|
| 論文名稱: |
刀豆蛋白A複合的金奈米粒子對於小鼠肺癌治療之研究 Therapeutic Effects of Concanavalin A-Conjugated Gold Nanoparticles on Lung Cancer in Mice |
| 指導教授: |
吳昭良
Wu, Chao-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 細胞自噬 、刀豆蛋白 、金奈米 、膠囊效應 |
| 外文關鍵詞: | Capsule Effect, Gold Nanoparticle, Autophagy, ConA |
| 相關次數: | 點閱:100 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於專一性的標靶治療,金奈米載體提供了一個全新的平台。金奈米粒子利用特有的物理與化學的特性在藥物運送上扮演重要的角色。複合上生物性的抗原或抗體、光學感應器、疾病及癌症治療的藥物的金奈米複合物被廣泛的應用在生物體上。
ConA,一種從Jack bean 中分離出的醣類結合蛋白。在正常生理pH和溫度下,ConA靠著氫鍵和六個分子間的鹽橋形成四聚體的形式,並且對於α-D-glucose, α-D-mannose有極高專一性的親和力,可以藉由這個特性結合到細胞表面上具有此類糖蛋白的區域。另一方面,ConA在In Vitro和In Vivo上有許多生物活性,包含刺激免疫細胞增生(Mitogenesis) 和細胞毒性(Cytotoxicity)。
在我的研究裡,我製備出ConA 複合的金奈米粒子“ ConA–AuNP ”複合物,並且利用癌細胞在In Vitro 及 In Vivo上測試它的治療效果。根據我們的實驗結果發現,在由LL2細胞所引起的小鼠路易斯型肺癌上ConA–AuNP複合物相較相同劑量下的 Free ConA無論在In Vitro 以及In Vivo都有更好的治療效果。
因此,我們的認為ConA–AuNP複合物相較於Free ConA在癌症的治療上可能有更好的治療效果。
This study provides a novel platform for Gold nanoparticles (AuNP) as agents of target-specific delivery therapy. AuNP exploit their unique chemical and physical properties for transporting and loading the pharmaceutics. AuNP conjucated with biological ligands or antibody, optical sensing, and therapeutic drug for various diseases or in cancer is popular used in biology.
Concanavalin A (ConA) is a lectin isolated from jack bean. At physiological pH value and temperature, the tetramer predominates, which is stabilized by hydrogen bonds and six inter-dimer salt-bridges. Because ConA has high affinity to α-D-glucose and α-D-mannose, it can bind to the carbohydrate moiety of glycoconjuates on the cellular membranes. On the other hand, ConA has been associated with a variety of biological effects including mitogenesis and cytotoxicity in vitro and in vivo.
In this study, I developed a formulation of ConA bound to the gold nanoparticle (ConA–AuNP) complex and examined its therapeutic effects on cancer cells in vitro and in vivo. ConA–AuNP complex showed higher cytotoxic effects on mouse lewis lung carcinoma cells (LL2) compared with an equal dose of Free ConA.
These results suggest that ConA–AuNP complex may be more effective than free ConA for cancer treatment.
Andersson,J., Sjoberg,O., and Moller,G. (1972). Reversibility of high dose unresponsiveness to concanavalin A in thymus lymphocytes. Immunology 23, 637-646.
Araujo,A., Ribeiro,R., Azevedo,I., Coelho,A., Soares,M., Sousa,B., Pinto,D., Lopes,C., Medeiros,R., and Scagliotti,G.V. (2007). Genetic polymorphisms of the epidermal growth factor and related receptor in non-small cell lung cancer--a review of the literature. Oncologist. 12, 201-210.
Ballerstadt,R., Evans,C., McNichols,R., and Gowda,A. (2006). Concanavalin A for in vivo glucose sensing: a biotoxicity review. Biosens. Bioelectron. 22, 275-284.
Boisselier,E. and Astruc,D. (2009). Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759-1782.
Chang,C.P. and Lei,H.Y. (2008). Autophagy induction in T cell-independent acute hepatitis induced by concanavalin A in SCID/NOD mice. Int. J. Immunopathol. Pharmacol. 21, 817-826.
Chang,C.P., Yang,M.C., Liu,H.S., Lin,Y.S., and Lei,H.Y. (2007). Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model. Hepatology 45, 286-296.
Cunningham,B.A., Wang,J.L., Waxdal,M.J., and Edelman,G.M. (1975). The covalent and three-dimensional structure of concanavalin A. II. Amino acid sequence of cyanogen bromide fragment F3. J. Biol. Chem. 250, 1503-1512.
Debray,H., Dus,D., Hueso,P., Radzikowski,C., and Montreuil,J. (1990). Lectin-resistant variants of mouse Lewis lung carcinoma cells. II. Altered glycosylation of membrane glycoproteins. Clin. Exp. Metastasis 8, 287-298.
Dus,D., Debray,H., Strzadala,L., Rak,J., Kusnierczyk,H., Montreuil,J., and Radzikowski,C. (1990). Lectin-resistant variants of mouse Lewis lung carcinoma cells. I. Selection and in vivo properties. Clin. Exp. Metastasis 8, 277-286.
Einhorn,L.H., Bonomi,P., Bunn,P.A., Jr., Camidge,D.R., Carbone,D.P., Choy,H., Dubinett,S.M., Gandara,D.R., Gaspar,L.E., Govindan,R., Johnson,D.H., Minna,J.D., Scagliotti,G., West,H.J., and Herbst,R.S. (2008). Summary report 7th Annual Targeted Therapies of the Treatment of Lung Cancer. J. Thorac. Oncol. 3, 545-555.
Elgavish,S. and Shaanan,B. (1997). Lectin-carbohydrate interactions: different folds, common recognition principles. Trends Biochem. Sci. 22, 462-467.
Esik,O., Horvath,A., Bajcsay,A., Hideghety,K., Agocs,L., Piko,B., Lengyel,Z., Petranyi,A., and Pisch,J. (2002). [Principles of radiotherapy of non-small cell lung cancer]. Magy. Onkol. 46, 51-85.
Filner,J.J. and Ost,D. (2008). Principles of staging as applied to nonsmall cell lung cancer. Curr. Opin. Pulm. Med. 14, 287-291.
Greer,J., Kaufman,H.W., and Kalb,A.J. (1970). An x-ray crystallographic study of concanavalin A. J. Mol. Biol. 48, 365-366.
Gunther,G.R., Wang,J.L., Yahara,I., Cunningham,B.A., and Edelman,G.M. (1973). Concanavalin A derivatives with altered biological activities. Proc. Natl. Acad. Sci. U. S. A 70, 1012-1016.
Hamilton,W., Round,A., Sharp,D., and Peters,T.J. (2005). Clinical features of colorectal cancer before diagnosis: a population-based case-control study. Br. J. Cancer 93, 399-405.
Herbst,R.S., Davies,A.M., Natale,R.B., Dang,T.P., Schiller,J.H., Garland,L.L., Miller,V.A., Mendelson,D., Van den Abbeele,A.D., Melenevsky,Y., de Vries,D.J., Eberhard,D.A., Lyons,B., Lutzker,S.G., and Johnson,B.E. (2007). Efficacy and safety of single-agent pertuzumab, a human epidermal receptor dimerization inhibitor, in patients with non small cell lung cancer. Clin. Cancer Res. 13, 6175-6181.
Kahn,H.J., Brodt,P., and Baumal,R. (1988). Lectin binding by liver and lung metastasizing variants of the murine Lewis lung carcinoma. Am. J. Pathol. 132, 180-185.
Kimling,J., Maier,M., Okenve,B., Kotaidis,V., Ballot,H., and Plech,A. (2006). Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B 110, 15700-15707.
Lanier,L.L., Ruitenberg,J.J., and Phillips,J.H. (1986). Human CD3+ T lymphocytes that express neither CD4 nor CD8 antigens. J. Exp. Med. 164, 339-344.
Liu,B., Min,M.W., and Bao,J.K. (2009). Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells. Autophagy. 5, 432-433.
Moller,G., Sjoberg,O., and Andersson,J. (1972). Mitogen-induced lymphocyte-mediated cytotoxicity in vitro: effect of mitogens selectively activating T or B cells. Eur. J. Immunol. 2, 586-592.
Nangia-Makker,P., Conklin,J., Hogan,V., and Raz,A. (2002). Carbohydrate-binding proteins in cancer, and their ligands as therapeutic agents. Trends Mol. Med. 8, 187-192.
Pratap,J.V., Bradbrook,G.M., Reddy,G.B., Surolia,A., Raftery,J., Helliwell,J.R., and Vijayan,M. (2001). The combination of molecular dynamics with crystallography for elucidating protein-ligand interactions: a case study involving peanut lectin complexes with T-antigen and lactose. Acta Crystallogr. D. Biol. Crystallogr. 57, 1584-1594.
Rudiger,H. and Gabius,H.J. (2001). Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj. J. 18, 589-613.
Shi,X., Wang,S.H., Van Antwerp,M.E., Chen,X., and Baker,J.R., Jr. (2009). Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst 134, 1373-1379.
So,L.L. and Goldstein,I.J. (1967). Protein-carbohydrate interaction. IV. Application of the quantitative precipitin method to polysaccharide-concanavalin A interaction. J. Biol. Chem. 242, 1617-1622.
Sun,Y., Qin,Y., Gong,F.Y., Wu,X.F., Hua,Z.C., Chen,T., and Xu,Q. (2009). Selective triggering of apoptosis of concanavalin A-activated T cells by fraxinellone for the treatment of T-cell-dependent hepatitis in mice. Biochem. Pharmacol. 77, 1717-1724.