簡易檢索 / 詳目顯示

研究生: 廖峻德
Liao, Chun-De
論文名稱: 激子局域性效應及雷射特性對於銫鉛鹵化物鈣鈦礦微米晶體之研究
Exciton Localization Effect and Lasing Behavior in Cesium Lead Halide Perovskite Micro-crystals
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 75
中文關鍵詞: 溴化銫鉛鈣鈦礦微米晶體載子聲子耦合局域激子局域性效應雷射
外文關鍵詞: CsPbBr3 , micro-crystals, carrier-phonon coupling, localized exciton, carrier localization, laser
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter 1. Introduction 1 1.1 Preface 1 1.2 Historical Review 2 1.2.1 Perovskite 2 1.2.2 Carrier-Phonon Coupling 8 1.3 Motivation 11 Chapter 2. Physical Theories 12 2.1 Characteristics of Cesium Lead Halide Perovskite 12 2.1.1 Crystal structure 12 2.1.2 Basic Optical Properties 16 2.1.3 Photoluminescence 17 2.2 Polaron and Carrier Localization 19 Chapter 3. Experiment Process and Measurement 22 3.1 Synthesis of Perovskite Micro-crystals 22 3.2 Analysis of CsPbBr3 Morphologies and Structures 25 3.2.1 Scanning Electron Microscope (SEM) 25 3.2.2 X-ray Diffraction (XRD) 26 3.3 Measurement of Optical Characteristics 28 3.3.1 Micro-Photoluminescence (micro-PL) 28 3.3.2 Temperature-dependent Photoluminescence System 30 3.3.3 Time-resolved Photoluminescence (TRPL) System 31 3.3.4 Micro-optical Absorption system 34 Chapter 4. Results and Discussion 35 4.1 Morphology and Structure 35 4.1.1 Image of Optical Microscope and SEM 35 4.1.2 XRD Analysis 37 4.1.3 HRTEM Analysis 38 4.2 Fundamental Optical properties 39 4.2.1 Optical Absorption and PL Spectra 39 4.2.2 Excitation Power-dependent PL spectra 40 4.3 Carrier localization in hemispheres CsPbBr3 43 4.3.1 Time-Resolved PL Analysis 43 4.3.2 Energy-dependent Time-Resolved PL Analysis 45 4.4 Temperature-dependent optical characteristics 50 4.5 Basic Lasing Characteristics 59 4.5.1 Cavity Size-Dependent Lasing Action 59 4.5.2 Size-Dependent Lasing Threshold Analysis 65 4.6 Characteristic Temperature 67 Chapter 5. Conclusion 69 Reference 70

    1 Ye, F. et al. Ligand‐Exchange of Low‐Temperature Synthesized CsPbBr3 Perovskite toward High‐Efficiency Light‐Emitting Diodes. Small Methods 3, 1800489 (2019).
    2 Yuan, H. et al. All-inorganic CsPbBr 3 perovskite solar cell with 10.26% efficiency by spectra engineering. Journal of Materials Chemistry A 6, 24324-24329 (2018).
    3 Zhang, H. et al. Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition. Chemical Engineering Journal 389, 124395 (2020).
    4 Yan, A. et al. Tuning the Optical Properties of CsPbBr 3 Nanocrystals by Anion Exchange Reactions with CsX Aqueous Solution. Nanoscale research letters 13, 1-7 (2018).
    5 Yettapu, G. R. et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano letters 16, 4838-4848 (2016).
    6 Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. The journal of physical chemistry letters 9, 3093-3097 (2018).
    7 Kaur, G. & Ghosh, H. N. Hot Carrier Relaxation in CsPbBr3-Based Perovskites: A Polaron Perspective. The Journal of Physical Chemistry Letters 11, 8765-8776 (2020).
    8 Munson, K. T., Kennehan, E. R., Doucette, G. S. & Asbury, J. B. Dynamic disorder dominates delocalization, transport, and recombination in halide perovskites. Chem 4, 2826-2843 (2018).
    9 Mohan, M. in Perovskite Photovoltaics 447-480 (Elsevier, 2018).
    10 Chakhmouradian, A. R. & Woodward, P. M. Vol. 41 387-391 (Springer, 2014).
    11 Zhou, J. & Huang, J. Photodetectors based on organic–inorganic hybrid lead halide perovskites. Advanced Science 5, 1700256 (2018).
    12 Weber, D. CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 33, 1443-1445 (1978).
    13 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the american chemical society 131, 6050-6051 (2009).
    14 Toshniwal, A. & Kheraj, V. Development of organic-inorganic tin halide perovskites: a review. Solar Energy 149, 54-59 (2017).
    15 Laboratory., N. R. E. Best Research-Cell Efficiency Chart, <https://www.nrel.gov/pv/cell-efficiency.html> (Accessed: 2022-04-21).
    16 Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE Journal of Photovoltaics 2, 303-311 (2012).
    17 Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nature nanotechnology 9, 687-692 (2014).
    18 Wei, Z. & Xing, J. The rise of perovskite light-emitting diodes. The Journal of Physical Chemistry Letters 10, 3035-3042 (2019).
    19 Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249-253 (2018).
    20 Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nature Photonics 12, 681-687 (2018).
    21 Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245-248 (2018).
    22 Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature materials 13, 476-480 (2014).
    23 Kulbak, M. et al. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. The journal of physical chemistry letters 7, 167-172 (2016).
    24 Ma, C. et al. Effects of small polar molecules (MA+ and H2O) on degradation processes of perovskite solar cells. ACS applied materials & interfaces 9, 14960-14966 (2017).
    25 Paul, S. & Samanta, A. N-Bromosuccinimide as Bromide precursor for direct synthesis of stable and highly luminescent green-emitting perovskite nanocrystals. ACS Energy Letters 5, 64-69 (2019).
    26 Wang, Q. et al. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science 10, 516-522 (2017).
    27 Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nature communications 7, 1-9 (2016).
    28 Liu, Y., Yang, Z. & Liu, S. Recent progress in single‐crystalline perovskite research including crystal preparation, property evaluation, and applications. Advanced Science 5, 1700471 (2018).
    29 Cheng, X., Yang, S., Cao, B., Tao, X. & Chen, Z. Single crystal perovskite solar cells: development and perspectives. Advanced Functional Materials 30, 1905021 (2020).
    30 Wang, Y. et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Research 10, 1223-1233 (2017).
    31 Xing, J. et al. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano letters 15, 4571-4577 (2015).
    32 Ghosh, D., Welch, E., Neukirch, A. J., Zakhidov, A. & Tretiak, S. Polarons in halide perovskites: a perspective. The Journal of Physical Chemistry Letters 11, 3271-3286 (2020).
    33 Feynman, R. P. Slow electrons in a polar crystal. Physical Review 97, 660 (1955).
    34 Adachi, S. GaAs, AlAs, and Al x Ga1− x As: Material parameters for use in research and device applications. Journal of Applied Physics 58, R1-R29 (1985).
    35 Fox, M. Optical properties of solids. (Oxford University Press 2010), pp.283.
    36 Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Materials Horizons 3, 613-620 (2016).
    37 Landau, L. D. Electron motion in crystal lattices. Phys. Z. Sowjet. 3, 664 (1933).
    38 Miyata, K. et al. Large polarons in lead halide perovskites. Science advances 3, e1701217 (2017).
    39 Iaru, C. M., Geuchies, J. J., Koenraad, P. M., Vanmaekelbergh, D. l. & Silov, A. Y. Strong carrier–phonon coupling in lead halide perovskite nanocrystals. ACS nano 11, 11024-11030 (2017).
    40 Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nature photonics 8, 506-514 (2014).
    41 Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials 28, 284-292 (2016).
    42 Sun, Q. & Yin, W.-J. Thermodynamic stability trend of cubic perovskites. Journal of the American Chemical Society 139, 14905-14908 (2017).
    43 Cottingham, P. & Brutchey, R. L. Depressed phase transitions and thermally persistent local distortions in CsPbBr3 quantum dots. Chemistry of Materials 30, 6711-6716 (2018).
    44 Li, J. et al. Inter-conversion between different compounds of ternary Cs-Pb-Br system. Materials 11, 717 (2018).
    45 Tong, G. et al. Dual‐Phase CsPbBr3–CsPb2Br5 Perovskite Thin Films via Vapor Deposition for High‐Performance Rigid and Flexible Photodetectors. Small 14, 1702523 (2018).
    46 Qiao, B. et al. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core–shell-like structure lead halide perovskite nanocrystals. Nanotechnology 28, 445602 (2017).
    47 Zhang, X. et al. All‐inorganic perovskite nanocrystals for high‐efficiency light emitting diodes: dual‐phase CsPbBr3‐CsPb2Br5 composites. Advanced Functional Materials 26, 4595-4600 (2016).
    48 Han, C. et al. Tunable luminescent CsPb 2 Br 5 nanoplatelets: applications in light-emitting diodes and photodetectors. Photonics Research 5, 473-480 (2017).
    49 Tong, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angewandte Chemie International Edition 55, 13887-13892 (2016).
    50 Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano letters 15, 3692-3696 (2015).
    51 Zhang, X., Pang, G., Xing, G. & Chen, R. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film. Materials Today Physics 15, 100259 (2020).
    52 Liu, Z. et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Applied Physics Letters 114, 101902 (2019).
    53 Wei, K. et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr 3 quantum dots. Optics letters 41, 3821-3824 (2016).
    54 Anderson, P. W. Absence of diffusion in certain random lattices. Physical review 109, 1492 (1958).
    55 Jin, H. et al. It's a trap! On the nature of localised states and charge trapping in lead halide perovskites. Materials Horizons 7, 397-410 (2020).
    56 Permogorov, S. & Reznitsky, A. Effect of disorder on the optical spectra of wide-gap II–VI semiconductor solid solutions. Journal of luminescence 52, 201-223 (1992).
    57 Sun, Y. J. et al. Nonpolar In x Ga 1− x N/GaN (11¯ 0 0) multiple quantum wells grown on γ− LiAlO 2 (100) by plasma-assisted molecular-beam epitaxy. Physical Review B 67, 041306 (2003).
    58 He, H. et al. Exciton localization in solution-processed organolead trihalide perovskites. Nature communications 7, 1-7 (2016).
    59 Kalt, H. & Klingshirn, C. F. in Semiconductor Optics 1 387-404 (Springer, 2019).
    60 Feierabend, M., Brem, S. & Malic, E. Optical fingerprint of bright and dark localized excitonic states in atomically thin 2D materials. Physical Chemistry Chemical Physics 21, 26077-26083 (2019).
    61 Kong, W. et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH 3 NH 3 PbI 3. Physical Chemistry Chemical Physics 17, 16405-16411 (2015).
    62 Cheng, F. et al. Time-resolved photoluminescence studies on localization effects in orthorhombic phase of CH3NH3PbI3 perovskite thin film. Journal of Luminescence 197, 248-251 (2018).
    63 Schmidt, T., Lischka, K. & Zulehner, W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Physical Review B 45, 8989 (1992).
    64 Shibata, H. et al. Excitation-power dependence of free exciton photoluminescence of semiconductors. Japanese journal of applied physics 44, 6113 (2005).
    65 Mott, N. The mobility edge since 1967. Journal of Physics C: Solid State Physics 20, 3075 (1987).
    66 Shibata, K., Yan, J., Hazama, Y., Chen, S. & Akiyama, H. Exciton Localization and Enhancement of the Exciton–LO Phonon Interaction in a CsPbBr3 Single Crystal. The Journal of Physical Chemistry C 124, 18257-18263 (2020).
    67 Du, W. et al. Unveiling lasing mechanism in CsPbBr 3 microsphere cavities. Nanoscale 11, 3145-3153 (2019).
    68 Yakunin, S. et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nature materials 18, 846-852 (2019).
    69 Zhao, Z. et al. Simultaneous Triplet Exciton–Phonon and Exciton–Photon Photoluminescence in the Individual Weak Confinement CsPbBr3 Micro/Nanowires. The Journal of Physical Chemistry C 123, 25349-25358 (2019).
    70 Zhang, C. et al. CsPbBr 3 interconnected microwire structure: temperature-related photoluminescence properties and its lasing action. Journal of Materials Chemistry C 7, 10454-10459 (2019).
    71 Gaponenko, M. S. et al. Temperature-dependent photoluminescence of PbS quantum dots in glass: Evidence of exciton state splitting and carrier trapping. Physical Review B 82, 125320 (2010).
    72 Lao, X. et al. Luminescence and thermal behaviors of free and trapped excitons in cesium lead halide perovskite nanosheets. Nanoscale 10, 9949-9956 (2018).
    73 Bhowmik, A. K. Polygonal optical cavities. Applied optics 39, 3071-3075 (2000).
    74 Spillane, S., Kippenberg, T. & Vahala, K. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621-623 (2002).
    75 Chen, R. et al. Exciton localization and optical properties improvement in nanocrystal-embedded ZnO core–shell nanowires. Nano letters 13, 734-739 (2013).
    76 Pan, C. H., Lin, C. H., Chang, T. Y., Lu, T. C. & Lee, C. P. GaSb-based mid infrared photonic crystal surface emitting lasers. Optics Express 23, 11741-11747 (2015).

    無法下載圖示 校內:2027-08-23公開
    校外:2027-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE