| 研究生: |
何清龍 Ho, Ching-Lung |
|---|---|
| 論文名稱: |
殘肢曲面模型形狀變更對介面應力之影響 The Effect of Modification of the CAD Models of Residual Limbs on Interface Stresses |
| 指導教授: |
許來興
Hsu, Lai-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 義肢承筒 、殘肢曲面形狀變更 、有限元素分析 、殘肢受壓區與非受壓區 、介面應力 |
| 外文關鍵詞: | Interface stress, Shape modification, Finite element analysis, CAD model, Prosthetic socket, Pressure-tolerant/Pressure-relief areas of stump |
| 相關次數: | 點閱:237 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在義肢承筒之設計中,殘肢所承受的應力大小及分佈狀況常用於判斷承筒之設計是否合適。本研究以有限元素分析方法輔助義肢承筒之設計與製作,其程序是以雷射掃瞄器擷取截肢者殘肢外形點資料,經由CAD軟體建立殘肢、內襯與承筒之幾何外型,以適當之材料特性與邊界條件,並配合接觸元素(contact element)之特性,建立有限元素分析模型,經由有限元素分析方法模擬殘肢與承筒間之接觸特性。先以未變更殘肢曲面模型之模擬分析結果為依據,針對殘肢之受壓區(pressure-tolerant area)與非受壓區(pressure-relief area)作曲面形狀變更,以探討介面應力之變化情形。
由分析案例之結果顯示,使用移動曲面控制點方法變更殘肢之腓骨前端(fibular head)區域,當變更區域曲面最大位移量為4 mm時,相較於未變更前殘肢承受的最大應力值,其最大正應力值由60 kPa減為32 kPa(減少46.7 %),最大剪應力值由40 kPa減為20 kPa(減少50 %)。使用曲面偏置方法變更殘肢之脛骨峭(tibial crest)區域,當變更區域曲面偏置量為4 mm時,其最大正應力值由79 kPa減為51 kPa(減少35.4 %),而最大剪應力值由42 kPa減為26 kPa(減少38.1 %)。
將本研究之模擬分析結果與相關文獻比較,由數據顯示,可驗證本研究之模型具有合理性。由此顯示本分析模型之模擬結果確實可作為義肢承筒設計之參考。
In the design of a prosthetic socket, the stress magnitude and distribution condition at the stump/socket interface are often used to predict whether or not the design of a socket is suitable. In this study, the technique of finite element analysis is employed to assist the use of reverse engineering applied on the design and fabrication of a prosthetic socket. There are three procedures as follows. Firstly, a laser scanner is used to capture the data points of an amputee’s stump. Secondly, a computer-aided software is employed to construct the CAD models of the stump, liner, and socket. The final procedure is that we establish the finite element models used to simulate the contact behavior between the stump and socket based on the appropriate material properties, the boundary conditions and the properties of the contact elements.
After the basic analysis model has been set up, the shapes of the surface models have been classified as original stump and the modified model on the PT/PR areas, such as the region of fibular head modified by moving control points of the designated area and the region of tibial crest altered by surface offset. The normal stress and shear stress are reduced down 35~50 % if the maximum displacements of the modified surface are 4 mm.
Compared with other relevant researches, the proposed analysis method has been verified by a case study. Therefore, the analysis results of this research certainly can be applied as the design reference for a prosthetic socket.
[Bowk92] Bowker, J. H. and Michael, J. W., Atlas of Limb Prosthetics:
Surgical, Prosthetic, and Rehabilitation Principles, 2nd Ed., Mosby-
Year Book, 1992.
[Dary00] Daryl, L., A First Course in the Finite Element Method, 3rd Ed.,
Logan, 2000.
[Hibb97] Hibbeler, R. C. and Fan, S. C., Engineering Mechanics Statics, 6th
Ed., Prentice-Hall, 1997.
[Hsu01a] Hsu, L. H., Hsu, F. M., Chou, Y. L., Hsu, J. Y., Leong, H., and
Huang, G. F., “An algorithm to construct the CAD model of a residual
limb,” Biomedical Engineering- Applications, Basis & Communications,
Vol.13, No.3, pp.41-50, 2001.
[Hsu01b] Hsu, L. H., Au, H. W., Chou, Y. L., and Huang, G. F., “Recognition
for the boundary of pressure-tolerant and pressure-relief areas on the
scanned points of residual limb,” Biomedical Engineering-
Applications, Basis & Communications, Vol.13, No.6, pp.21-27, 2001.
[IMAG98] IMAGEWARE, Imageware Surfacer Training Guide, 1998.
[Lee97] Lee, V. S. P., Solomonidis, S. E., and Spence, W. D., “Stump-socket
interface pressure as an aid to socket design in prostheses for trans-
femoral amputees-a preliminary study,” Proceedings -Institution of
Mechanical Engineers, Vol.211, No.2, pp.167-180, 1997.
[Mak01] Mak, A. F. T., Zhang, M., and Boone, D. A., “State-of-the art
research in lower-limb prosthetic biomechanics-socket interface: A
review,” Journal of Rehabilitation Research & Development, Vol.38,
No.2, pp.161-173, 2001.
[Ques91] Quesasa, P. and Skinner, H. B., “Analysis of a below-knee patellar
tendon-bearing prosthesis: A finite element study,” Journal of
Rehabilitation Research & Development, Vol.28, No.3, pp.1-12, 1991.
[Rao99] Rao, S. S., The Finite Element Method in Engineering, 3rd Ed.,
Butterworth-Heinemann, 1999.
[Sand92] Sanders, J. E. and Daly, C. H., “Interface shear stresses during
ambulation with a below-knee prosthetic limb,” Journal of
Rehabilitation Research & Development, Vol.29, No.4, pp.1-8, 1992.
[Sand93a] Sanders, J. E. and Daly, C. H., “Measurement of stresses in three
orthogonal directions at the residual limb-prosthetic socket
interface,” IEEE Transactions on Rehabilitation Engineering, Vol.1,
No.2, pp.79-85, 1993.
[Sand93b] Sanders, J. E. and Daly, C. H., “Normal and shear stresses on a
residual limb in a prosthetic socket during ambulation: comparison of
finite element results with experimental measurements,” Journal of
Rehabilitation Research & Development, Vol.30, No.2, pp.191-204, 1993.
[SDRC00] SDRC, I-DEASTM HELP LIBRARY, 2000.
[Silv96] Silver-Thorn, M. B. and Steege, J. W., “A review of prosthetic
interface stress investigations,” Journal of Rehabilitation Research
& Development, Vol.33, No.3, pp.253-266, 1996.
[Silv97] Silver-Thorn, M. B. and Childress, D. S., “Generic, geometric finite
element analysis of the transtibial residual limb and prosthetic
socket,” Journal of Rehabilitation Research & Development, Vol.34,
No.2, pp.271-186, 1997.
[Trac02] TracerCAD Corporation, http://www.tracercad.com/, 2002.
[Vann97] Vannier, M. W., Commean, P. K., Brunsden, B. S., and Smith K. E.,
“Visualization of prosthesis fit in lower-limb amputees,” IEEE
Computer Graphics and Applications, Vol.17, No.5, pp.16-29, 1997.
[Vara97] Varady, T., Martin, R. R. and Cox, J., “Reverse engineering of
geometric models-an introduction,” Computer- Aided Design, Vo1.29,
No.4, pp.255-268, 1997.
[Zach96] Zachariah, S. G. and Sanders, J. E., “Interface mechanics in lower-
limb external prosthetics: a review of finite element models,” IEEE
Transactions on Rehabilitation Engineering, Vol.4, No.4, pp.288-302,
1996.
[Zeid91] Zeid, I., CAD/CAM Theory and Practice, McGRAW-HILL, 1991.
[Zhan95] Zhang, M., Lord, M., Turner-Smith, A. R. and Roberts, V. C.,
“Development of a non-linear finite element modeling of the below-knee
prosthetic socket interface,” Medical Engineering & Physics, Vol.17,
No.8, pp.559-566, 1995.
[Zhan96] Zhang, M., Turner-Smith, A. R., Roberts, V. C. and Tanner, A.,
“Friction action at lower limb/prosthetic socket interface,” Medical
Engineering & Physics, Vol.18, No.3, pp.207-214, 1996.
[Zhan97] Zhang, M., Zheng, Y. P. and Mak, A. F. T., “Estimating the effective
Young’s modulus of soft tissues from indentation tests-nonlinear
finite element analysis of effects of friction and large
deformation,” Medical Engineering & Physics, Vol.19, No.6, pp.512-
517, 1997.
[Zhan98] Zhang, M., Mak, A. F. T. and Roberts, V. C., “Finite element
modeling of a residual lower-limb in a prosthetic socket: a survey of
the development in the first decade,” Medical Engineering & Physics,
Vol.20, No.5, pp.360-373, 1998.
[朱01] 朱元南、張瑚松、周錦松,I-DEAS實體模型設計,全華科技圖書股份有限公司,
2001。
[吳00] 吳柱龍,膝下義肢與殘肢間之介面應力分析,國立成功大學醫學工程研究所,碩
士論文,2000。
[何02] 何浩然,個人聯繫,國立成功大學附屬醫院復健部,治療師,2002。
[李02] 李輝煌,電腦輔助工程,http://140.116.78.211/,2002。
[張99] 張仲卿,逆向工程技術及整合應用,高立圖書有限公司,1999。
[張95] 張名凱,下肢截肢者之步態與義肢校正量分析,國立陽明大學醫學工程研究所,
碩士論文,1995。
[崑02] 崑明國際醫療器材科技,http://www.3dmedical.com.tw/,2002。
[許01] 許茹宜,殘肢CAD曲面模型之形狀變更,國立成功大學機械工程學系,碩士論
文,2001。
[黃98] 黃國峰,膝關節以下截肢患者之步態和能量消耗分析,國立成功大學醫學工程研
究所,碩士論文,1998。
[黃02] 黃國峰,個人聯繫,國立成功大學附屬醫院,治療師;國立成功大學醫學工程研
究所,博士班研究,2002。
[楊98] 楊世偉、蔡欣記、曾明基、彭兆偉,“膝下義肢承筒之有限元分析”,中華醫學
工程學刊,第18卷,第4期,頁203-208,1998。
[熊02] 熊大鈞,曲面偏置方法應用於殘肢受壓區與非受壓區之形狀修改,國立成功大學
機械工程學系,碩士論文,2002。
[蔡00] 蔡國忠、陳精一,電腦輔助工程分析,全華科技圖書股份有限公司,2000。
[澤85] 澤村誠志著,蕭英宏譯,截肢義肢學,高雄縣私立樹人醫事職業學校復健技術科
教學委員會編印,1985。
[賴02] 賴朝鍵,逆向工程重建CAD模型之研究與實例探討,國立成功大學機械工程學
系,碩士論文,2002。
[簡02] 簡志緯,殘肢曲面模型形狀變更自動化系統設計,國立成功大學機械工程學系,
碩士論文,2002。