簡易檢索 / 詳目顯示

研究生: 劉澄
Liu, Cheng
論文名稱: 在模擬缺氧狀態下,以小鼠細胞及骨折模型探討非類固醇抗發炎藥對成骨細胞凋亡及骨癒合之作用
Investigation of Nonsteroidal Anti-Inflammatory Drugs on Osteoblast Apoptosis and Bone Healing under Hypoxia- mimetic Situation with Mouse Cell and Fracture Model
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 98
中文關鍵詞: 缺氧成骨細胞凋亡發炎非類固醇抗發炎藥物骨折癒合
外文關鍵詞: hypoxia, osteoblast, apoptosis, inflammation, NSAID, fracture healing
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨骼是提供人體支撐、保護和運動功能的重要器官。當壓砸型式的外力造成骨折時,常合併血管破裂和軟組織腫脹,這些因素會導致骨組織處於缺血及低氧狀態,引起發炎、水腫,最後形成骨壞死。骨癒合過程可分為發炎、軟性骨痂生成、硬性骨痂生成以及組織重塑四個階段;適度的發炎反應已被證實有益於骨組織的修復,發炎反應主要是由花生四烯油酸(arachidonic acid, AA)藉由環氧合酶(cyclo-oxygenase, COX)或5-脂氧合酶(5-lipo-oxygenase, 5-LOX)作用,轉換成前列腺素(prostaglandin, PG)及白三烯(leukotrienes, LT)產生,而cyclo-oxygenase -2 (COX-2)是被骨折誘導的發炎反應因子之一,經由COX-2調控釋放prostaglandin (PG)來控制蝕骨細胞的骨吸收作用及成骨細胞的骨新生成作用。另外骨折後的疼痛是臨床上必需迅速解決的重要問題,非類固醇抗發炎藥則是現在臨床上最常使用的止痛劑。目前關於低氧環境對成骨細胞的傷害,和低氧環境下,非類固醇抗發炎藥對成骨細胞凋亡及骨癒合的影響都還不是十分明瞭。因此本研究的目的在於探討低氧環境對成骨細胞的傷害和低氧環境下,非類固醇抗發炎藥對成骨細胞凋亡及骨癒合的影響。
    為了瞭解低氧環境對人類成骨細胞凋亡及骨癒合的影響,我們先建構一個在低氧狀態下人類成骨細胞的凋亡模型,利用氯化鈷(COCl2)和Desferrioxamine兩種低氧模擬藥,加入人類成骨細胞(MG-63和hFOB)中,分別在0、4、8、12、24、48小時後,觀察細胞數目和形態、缺氧誘發因子(hypoxia inducible factor -1α, HIF-1α)、COX-2和cleaved poly ADP-ribose polymerase (PARP)的變化。另外在低氧狀態下,於人類成骨細胞加入四種抗發炎藥: 三種非類固醇抗發炎藥indomethacin(IND)、sulindac(SUL)、aspirin(Asp)和另一類抗發炎藥salicylate,在加藥1小時後觀察細胞數目、COX-2 、Caspase-3、PARP cleavage和鹼性磷酸酶(alkaline phosphatase, ALP)的變化。其次是將6-8週大的B6母小鼠麻醉,先以直徑0.25mm不銹鋼釘由左膝部穿入脛骨髓腔,再利用自由落體撞擊損傷模擬裝置,給予5.15×10-1牛頓的垂直撞擊力量,造成脛骨骨折,分別於骨折後2天、1週、2週、8週犧牲小鼠,取下脛骨骨折區域之組織做H&E染色,並利用微電腦斷層在18μm/75kV/112μA和0.025mm鈦濾片條件下,於骨折後1、2、4、8週分析骨體積(bone volume)、骨痂體積(callus volume)、組織體積(total tissue volume)和骨鈣化密度(bone mineralization density)的變化。另外骨折後連續給予口服7日之indomethacin (100mg /50kg/day),於第2天、2週、4週分別做Hematoxylin and Eocin(H&E)、COX-2 immuno-histo-chemistry和Terminal deoxy- nucleotidyl transferase dUTP nick end-labeling(TUNEL)染色,以瞭解indomethacin對成骨細胞凋亡的影響。骨折後連續給予7日之口服阿斯匹靈(Asp)、非選擇性COX抗發炎藥-indomethacin、選擇性COX-2抗發炎藥-SC-236,來研究非類固醇抗發炎藥物對早期骨癒合的影響。
    結果顯示,氯化鈷(COCl2)和Desferrioxamine確實在不同的時間點會造成人類成骨細胞數目減少,低氧誘發因子(HIF-1α) 和COX-2的表現增加。加入藥物48小時後cleaved PARP的增加和Annexin-V陽性/Propidium iodide陰性染色則證明成骨細胞有凋亡的現象。氯化鈷(COCl2)和Desferrioxamine都會抑制鹼性磷酸酶(ALP)功能。在低氧狀態下,IND 和SUL使得cleaved PARP表現增加,顯示都會促進人類成骨細胞的凋亡,也幾乎完全抑制鹼性磷酸酶(ALP)的作用。而阿斯匹靈(Asp)則沒有明顯促進成骨細胞凋亡的現象。在骨折後第1、2、4和8週利用微電腦斷層掃描骨頭癒合情況、計算骨痂體積、骨頭體積、組織體積和骨鈣化密度;骨修復過程中,在第2週有最大的骨痂體積,有最大骨體積在第4週,在第8週有最高的骨鈣化密度表現。TUNEL染色顯示骨折後給予IND會增加成骨細胞的凋亡和在第4週時造成骨癒合的延緩。IND會降低LTB4受體(BLT1)但並沒有明顯改變細胞凋亡和COX-2的表現量。阿斯匹靈(Asp)對骨折癒合的影響在較早的軟骨細胞形成階段,同時也減少了細胞凋亡和降低COX-2及BLT1的表現量。SC-236降低COX-2的表現量但不影響細胞凋亡和BLT1的表現量。
    根據上述的實驗結果,我們認為低氧狀態和非類固醇抗發炎藥物(尤其是IND)確實會使得人類成骨細胞凋亡,並可能延緩骨癒合。我們的發現可以研究不同的治療策略,協助抗發炎藥物的選擇,及提供骨折患者較佳的臨床治療方式。
    關鍵字: 缺氧、成骨細胞、凋亡、發炎、非類固醇抗發炎藥物、骨折癒合

    The human skeleton provides mechanical support for weight bearing, protection and locomotion. In addition to bone fracture by direct external force, impairment of blood supply due to vessel damage and soft tissue swelling often combine simultaneously and result in ischemia-hypoxic injury of bone tissues, especially caused by crush injury. All together, these factors lead to the consequential bone tissue inflammation, edema and finally, necrosis. Pain is also an important symptom, clinically in need of solving immediately after injury. Currently, the most widely used analgesic drugs in orthopedic clinics are nonsteroidal anti-inflammatory drugs (NASIDs). However, the underlying molecular mechanism of hypoxia-induced bone injury and outcome for usage of anti-inflammatory drugs (AIDs) on fracture repair in hypoxic environment are still poorly understood.
    To investigate the damage and functional deficiency of osteoblast in hypoxia, two hypoxia mimetics, cobalt chloride (CoCl2) and desferrioxamine (DFO), were used to create an in vitro hypoxic microenvironment in human osteoblast-like cells, MG-63 and hFOB. The cell damage was observed by cell number and morphology, hypoxia-inducible factor-1α (HIF-1α), cyclo-oxygenase-2 (COX-2) and cleaved poly ADP-ribose polymerase (PARP). Cell apoptosis was confirmed by WST-1 cytotoxic assays and flow cytometry. To simulate the use of NSAID after hypoxic injury, three kinds of NSAIDs, indomethacin (IND), sulindac sulfide (SUL), and aspirin (Asp), and sodium salicylate (NaS) were applied to osteoblasts subjected to hypoxia condition. Cyclo-oxygenase-2 (COX-2), caspase-3, PARP cleavage and alkaline phosphatase (ALP) were observed 48 hours after AIDs treatment.
    Then, we create an animal model to evaluate effects of NSAIDs on healing of crush fracture. Tibia fracture of mouse was created by a free-dropping impacted-injury simulator and micro-computed tomography (μCT), was used to analyse bone volume, callus volume, total tissue volume and bone mineralization density. Indomethcin was continuously given by oral feeding for 7 days and the fracture area was harvested for H&E stain, immuno-histo-chemistry of COX-2 and TUNEL assay. The anti-inflammatory effects of NSAID treatments were investigated by providing a daily oral intake of Asp, IND, and a selective COX-2 inhibitor (SC-236) in mice after fracture injury. The inflammatory responses on fractured site with various NSAIDs treatments were identified by histological analysis.
    The results showed that hypoxia reduced the cell number of osteoblasts and increased the expression of hypoxia-inducible factor-1α (HIF-1α) and cyclo-oxygenase-2 (COX-2) at different temporal characteristic among CoCl2 and DFO. The increase of cell apoptosis was confirmed by cleaved poly ADP-ribose polymerase (PARP) and assessed using flow cytometry by positive Annexin V / negative staining with propidium iodide. The functional expression of osteoblast in alkaline phosphatase (ALP) activity was significantly decreased by CoCl2 and inhibited when treated with DFO. The treatment of IND and SUL increased the percentage of cells apoptosis and showed higher expression in cleavage of PARP. The ALP activity was totally abolished in hypoxic osteoblasts with IND treatment. On the other hand, the cell damage and ALP function seemed unaffected by Asp treatment. Facilitation of osteoblast apoptosis occurred regardless of IND dosage under hypoxic condition. The highest volume of bone formation was detected at 4 weeks and highest callus volume can be identified as early as on 2 weeks. The highest mineral density in fracture bone was observed after 8 weeks of injury. IND-induced osteoblast apoptosis was confirmed by positive staining of TUNEL assay in fractured mice. The IND-treated fractured mice showed significant delay of fracture healing in bone tissue, and decreased expression of BLT1, but showed no significant changes in cell apoptosis or COX-2 expression comparing to fracture mice not receiving IND treatment. The Asp treatment significantly inhibited cell apoptosis, expression of COX-2 and BLT1. Similarly, treatment with SC-236 specifically reduced COX-2 expression in the tissue of fracture mice, but did not alter cell apoptosis or BLT1 expression.
    According to the data gained from above, we believe that both hypoxia and NSAIDs induce osteoblast apoptosis. NSAIDs impair the healing of the fractured bone under hypoxia. These results may provide very valuable information in choosing the NSAID for patients with bone fracture. Key words: hypoxia;osteoblast;apoptosis;NSAID;fracture healing

    CONTENTS ABSTRACT I 摘要 IV 致謝 VII TABLE CONTENT X FIGURE CONTENT X INTRODUCTION 1 STATEMENT OF PROBLEMS AND RATIONALE 1 AN OVERVIEW OF FRACTURE HEALING 3 HYPOXIA-INDUCIBLE FACTOR-1Α (HIF-1Α) 5 APOPTOSIS 8 INFLAMMATORY RESPONSE ON FRACTURE HEALING 12 PURPOSE AND SPECIFIC AIMS 16 MATERIALS AND METHODS 17 CELL CULTURE (HUMAN OSTEOBLAST-LIKE CELL LINE) 17 IN VITRO HYPOXIA MODEL 18 ANTI-INFLAMMATORY DRUG TREATMENT 19 CELL VIABILITY ASSAY 19 WESTERN BLOTTING 20 FUNCTIONAL TEST OF OSTEOBLAST 21 IN VIVO HYPOXIA MODEL: ESTABLISHMENT OF TRAUMATIC TIBIA FRACTURE MODEL OF MOUSE 21 MICRO-COMPUTED TOMOGRAPHY (ΜCT) 23 PARAFFIN EMBED 25 HEMATOXYLIN AND EOSIN (H&E) STAIN 27 TUNEL ASSAY 29 IMMUNOHISTOCHEMISTRY 31 NSAID TREATMENT 33 IMMUNOHISTOLOGICAL ASSESSMENTS 34 STATISTICAL ANALYSIS 36 RESULTS 38 HYPOXIA INDUCED OSTEOBLASTS DAMAGE IN VITRO 38 LOSS OF ALP FUNCTION IN HYPOXIA-INJURED OSTEOBLASTS 46 NSAIDS ENHANCE CELL DEATH IN HYPOXIC OSTEOBLASTS 49 DOSAGE INDEPENDENCE OF INDOMETHACIN-ENHANCED OSTEOBLASTS DEATH UNDER HYPOXIA 55 DETERMINATION OF FRACTURE MODEL REPAIRED PROCESS 58 INDUCTION OF OSTEOBLASTS DEATH WITH INDOMETHACIN TREATMENT IN FRACTURED MICE 65 STRUCTURE CHANGES AND INFLAMMATION IN LESION TISSUE ON FRACTURE SITE 69 EARLY INFLAMMATORY RESPONSES TO VARIOUS NSAID TREATMENT AFTER FRACTURE 72 DISCUSSION 76 CONCLUSION AND FUTURE WORKS 82 REFERENCES 84 CURRICULUM VITAE 96

    REFERENCES
    Abdul-Hadi, O., J. Parvizi, M.S. Austin, E. Viscusi, and T. Einhorn. 2009. Nonsteroidal anti-inflammatory drugs in orthopaedics. J Bone Joint Surg Am. 91:2020-2027.
    Atabey, A., M.J. Im, F.M. Akgur, C.A. Kolk, and P.N. Manson. 1996. The effect of cobalt chloride on skin flap survival. Br J Plast Surg. 49:321-324.
    Biggs, W.H., 3rd, J. Meisenhelder, T. Hunter, W.K. Cavenee, and K.C. Arden. 1999. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 96:7421-7426.
    Brahimi-Horn, M.C., and J. Pouyssegur. 2009. HIF at a glance. J Cell Sci. 122:1055-1057.
    Brown, K.M., M.M. Saunders, T. Kirsch, H.J. Donahue, and J.S. Reid. 2004. Effect of COX-2-specific inhibition on fracture-healing in the rat femur. J Bone Joint Surg Am. 86-A:116-123.
    Celotti, F., and T. Durand. 2003. The metabolic effects of inhibitors of 5-lipoxygenase and of cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins Other Lipid Mediat. 71:147-162.
    Chavez, J.C., K. Almhanna, and L.N. Berti-Mattera. 2005. Transient expression of hypoxia-inducible factor-1 alpha and target genes in peripheral nerves from diabetic rats. Neurosci Lett. 374:179-182.
    Chen, N.X., K.D. Ryder, F.M. Pavalko, C.H. Turner, D.B. Burr, J. Qiu, and R.L. Duncan. 2000. Ca(2+) regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol. 278:C989-997.
    Cottrell, J.A., and J.P. O'Connor. 2009. Pharmacological inhibition of 5-lipoxygenase accelerates and enhances fracture-healing. J Bone Joint Surg Am. 91:2653-2665.
    Danciu, T.E., R.M. Adam, K. Naruse, M.R. Freeman, and P.V. Hauschka. 2003. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett. 536:193-197.
    Dimmen, S., L. Nordsletten, L. Engebretsen, H. Steen, and J.E. Madsen. 2008. Negative effect of parecoxib on bone mineral during fracture healing in rats. Acta Orthop. 79:438-444.
    Dimmen, S., L. Nordsletten, and J.E. Madsen. 2009. Parecoxib and indomethacin delay early fracture healing: a study in rats. Clin Orthop Relat Res. 467:1992-1999.
    Egli, R.J., J.D. Bastian, R. Ganz, W. Hofstetter, and M. Leunig. 2008. Hypoxic expansion promotes the chondrogenic potential of articular chondrocytes. J Orthop Res. 26:977-985.
    Fayaz, H.C., P.V. Giannoudis, M.S. Vrahas, R.M. Smith, C. Moran, H.C. Pape, C. Krettek, and J.B. Jupiter. 2011. The role of stem cells in fracture healing and nonunion. Int Orthop. 35:1587-1597.
    Genetos, D.C., C.M. Lee, A. Wong, and C.E. Yellowley. 2009. HIF-1alpha regulates hypoxia-induced EP1 expression in osteoblastic cells. J Cell Biochem. 107:233-239.
    Geng, W.D., G. Boskovic, M.E. Fultz, C. Li, R.M. Niles, S. Ohno, and G.L. Wright. 2001. Regulation of expression and activity of four PKC isozymes in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol. 189:216-228.
    Gerstenfeld, L.C., D.M. Cullinane, G.L. Barnes, D.T. Graves, and T.A. Einhorn. 2003. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 88:873-884.
    Granet, C., N. Boutahar, L. Vico, C. Alexandre, and M.H. Lafage-Proust. 2001. MAPK and SRC-kinases control EGR-1 and NF-kappa B inductions by changes in mechanical environment in osteoblasts. Biochem Biophys Res Commun. 284:622-631.
    Harder, A.T., and Y.H. An. 2003. The mechanisms of the inhibitory effects of nonsteroidal anti-inflammatory drugs on bone healing: a concise review. J Clin Pharmacol. 43:807-815.
    Hardy, M.M., K. Seibert, P.T. Manning, M.G. Currie, B.M. Woerner, D. Edwards, A. Koki, and C.S. Tripp. 2002. Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 46:1789-1803.
    Hikiji, H., S. Ishii, T. Yokomizo, T. Takato, and T. Shimizu. 2009. A distinctive role of the leukotriene B4 receptor BLT1 in osteoclastic activity during bone loss. Proc Natl Acad Sci U S A. 106:21294-21299.
    Hiltunen, A., E. Vuorio, and H.T. Aro. 1993. A standardized experimental fracture in the mouse tibia. J Orthop Res. 11:305-312.
    Holstein, J.H., P. Garcia, T. Histing, A. Kristen, C. Scheuer, M.D. Menger, and T. Pohlemann. 2009. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration. J Orthop Trauma. 23:S31-38.
    Jones, M.K., I.L. Szabo, H. Kawanaka, S.S. Husain, and A.S. Tarnawski. 2002. von Hippel Lindau tumor suppressor and HIF-1alpha: new targets of NSAIDs inhibition of hypoxia-induced angiogenesis. FASEB J. 16:264-266.
    Kawabata, A. 2011. Prostaglandin E2 and pain--an update. Biol Pharm Bull. 34:1170-1173.
    Keating, J.F., P.A. Blachut, P.J. O'Brien, and C.M. Court-Brown. 2000. Reamed nailing of Gustilo grade-IIIB tibial fractures. J Bone Joint Surg Br. 82:1113-1116.
    Kim, S.J., H.J. Jeong, P.D. Moon, N.Y. Myung, M.C. Kim, T.H. Kang, K.M. Lee, R.K. Park, H.S. So, E.C. Kim, N.H. An, J.Y. Um, H.M. Kim, and S.H. Hong. 2007. The COX-2 inhibitor SC-236 exerts anti-inflammatory effects by suppressing phosphorylation of ERK in a murine model. Life Sci. 81:863-872.
    Knowles, H.J., and N.A. Athanasou. 2009. Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J Pathol. 218:256-264.
    Kolar, P., K. Schmidt-Bleek, H. Schell, T. Gaber, D. Toben, G. Schmidmaier, C. Perka, F. Buttgereit, and G.N. Duda. 2010. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 16:427-434.
    Lavrik, I.N. 2010. Systems biology of apoptosis signaling networks. Curr Opin Biotechnol. 21:551-555.
    Lee, C.M., D.C. Genetos, Z. You, and C.E. Yellowley. 2007. Hypoxia regulates PGE(2) release and EP1 receptor expression in osteoblastic cells. J Cell Physiol. 212:182-188.
    Lee, D.Y., Y.S. Li, S.F. Chang, J. Zhou, H.M. Ho, J.J. Chiu, and S. Chien. 2010. Oscillatory flow-induced proliferation of osteoblast-like cells is mediated by alphavbeta3 and beta1 integrins through synergistic interactions of focal adhesion kinase and Shc with phosphatidylinositol 3-kinase and the Akt/mTOR/p70S6K pathway. J Biol Chem. 285:30-42.
    Lee, D.Y., C.R. Yeh, S.F. Chang, P.L. Lee, S. Chien, C.K. Cheng, and J.J. Chiu. 2008. Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner Res. 23:1140-1149.
    Liou, J.Y., C.C. Wu, B.R. Chen, L.B. Yen, and K.K. Wu. 2008. Nonsteroidal anti-inflammatory drugs induced endothelial apoptosis by perturbing peroxisome proliferator-activated receptor-delta transcriptional pathway. Mol Pharmacol. 74:1399-1406.
    Liu, C., A.L. Tsai, Y.C. Chen, S.C. Fan, C.H. Huang, C.C. Wu, and C.H. Chang. 2012. Facilitation of human osteoblast apoptosis by sulindac and indomethacin under hypoxic injury. J Cell Biochem. 113:148-155.
    Manigrasso, M.B., and J.P. O'Connor. 2010. Accelerated fracture healing in mice lacking the 5-lipoxygenase gene. Acta Orthop. 81:748-755.
    Marsell, R., and T.A. Einhorn. 2011. The biology of fracture healing. Injury. 42:551-555.
    McAllister, T.N., and J.A. Frangos. 1999. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J Bone Miner Res. 14:930-936.
    Murphy, R.C., and M.A. Gijon. 2007. Biosynthesis and metabolism of leukotrienes. Biochem J. 405:379-395.
    Naik, A.A., C. Xie, M.J. Zuscik, P. Kingsley, E.M. Schwarz, H. Awad, R. Guldberg, H. Drissi, J.E. Puzas, B. Boyce, X. Zhang, and R.J. O'Keefe. 2009. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res. 24:251-264.
    Nakase, T., and H. Yoshikawa. 2006. Potential roles of bone morphogenetic proteins (BMPs) in skeletal repair and regeneration. J Bone Miner Metab. 24:425-433.
    Peverali, F.A., E.K. Basdra, and A.G. Papavassiliou. 2001. Stretch-mediated activation of selective MAPK subtypes and potentiation of AP-1 binding in human osteoblastic cells. Mol Med. 7:68-78.
    Remedios, A. 1999. Bone and bone healing. Vet Clin North Am Small Anim Pract. 29:1029-1044, v.
    Rodan, G.A., and M. Noda. 1991. Gene expression in osteoblastic cells. Crit Rev Eukaryot Gene Expr. 1:85-98.
    Rosova, I., M. Dao, B. Capoccia, D. Link, and J.A. Nolta. 2008. Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells. 26:2173-2182.
    Sakai, K., M. Mohtai, and Y. Iwamoto. 1998. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif Tissue Int. 63:515-520.
    Schindeler, A., M.M. McDonald, P. Bokko, and D.G. Little. 2008. Bone remodeling during fracture repair: The cellular picture. Semin Cell Dev Biol. 19:459-466.
    Semenza, G.L. 2009. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol. 19:12-16.
    Serhan, C.N., and J. Savill. 2005. Resolution of inflammation: the beginning programs the end. Nat Immunol. 6:1191-1197.
    Soleymaninejadian, E., K. Pramanik, and E. Samadian. 2012. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol. 67:1-8.
    Steinbrech, D.S., B.J. Mehrara, P.B. Saadeh, G. Chin, M.E. Dudziak, R.P. Gerrets, G.K. Gittes, and M.T. Longaker. 1999. Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg. 104:738-747.
    Su, F.C., C.C. Wu, and S. Chien. 2011. Review: Roles of Microenvironment and Mechanical Forces in Cell and Tissue Remodeling. J Med Biol Eng. 31(4):233-244.
    Tang, Y., X. Wu, W. Lei, L. Pang, C. Wan, Z. Shi, L. Zhao, T.R. Nagy, X. Peng, J. Hu, X. Feng, W. Van Hul, M. Wan, and X. Cao. 2009. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 15:757-765.
    Teitelbaum, S.L. 2000. Bone resorption by osteoclasts. Science. 289:1504-1508.
    Tuncay, O.C., D. Ho, and M.K. Barker. 1994. Oxygen tension regulates osteoblast function. Am J Orthod Dentofacial Orthop. 105:457-463.
    Ulukaya, E., C. Acilan, and Y. Yilmaz. 2011. Apoptosis: why and how does it occur in biology? Cell Biochem Funct. 29:468-480.
    Warner, T.D., and J.A. Mitchell. 2002. Cyclooxygenase-3 (COX-3): filling in the gaps toward a COX continuum? Proc Natl Acad Sci U S A. 99:13371-13373.
    Weinreb, M., I. Suponitzky, and S. Keila. 1997. Systemic administration of an anabolic dose of PGE2 in young rats increases the osteogenic capacity of bone marrow. Bone. 20:521-526.
    Welting, T.J., M.M. Caron, P.J. Emans, M.P. Janssen, K. Sanen, M.M. Coolsen, L. Voss, D.A. Surtel, A. Cremers, J.W. Voncken, and L.W. van Rhijn. 2011. Inhibition of cyclooxygenase-2 impacts chondrocyte hypertrophic differentiation during endochondral ossification. Eur Cell Mater. 22:420-436; discussion 436-427.
    Wu, C.C., Y.S. Li, J.H. Haga, R. Kaunas, J.J. Chiu, F.C. Su, S. Usami, and S. Chien. 2007. Directional shear flow and Rho activation prevent the endothelial cell apoptosis induced by micropatterned anisotropic geometry. Proc Natl Acad Sci U S A. 104:1254-1259.
    Wu, C.C., Y.S. Li, J.H. Haga, N. Wang, I.Y. Lian, F.C. Su, S. Usami, and S. Chien. 2006. Roles of MAP kinases in the regulation of bone matrix gene expressions in human osteoblasts by oscillatory fluid flow. J Cell Biochem. 98:632-641.
    Xie, C., X. Ming, Q. Wang, E.M. Schwarz, R.E. Guldberg, R.J. O'Keefe, and X. Zhang. 2008. COX-2 from the injury milieu is critical for the initiation of periosteal progenitor cell mediated bone healing. Bone. 43:1075-1083.
    You, J., G.C. Reilly, X. Zhen, C.E. Yellowley, Q. Chen, H.J. Donahue, and C.R. Jacobs. 2001. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem. 276:13365-13371.
    Zhang, X., E.M. Schwarz, D.A. Young, J.E. Puzas, R.N. Rosier, and R.J. O'Keefe. 2002. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 109:1405-1415.
    Ziros, P.G., A.P. Gil, T. Georgakopoulos, I. Habeos, D. Kletsas, E.K. Basdra, and A.G. Papavassiliou. 2002. The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J Biol Chem. 277:23934-23941.

    無法下載圖示 校內:2017-05-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE