簡易檢索 / 詳目顯示

研究生: 黃瀚璋
Huang, Han-Chang
論文名稱: 誰能掌握網際網路的趨勢?找到在大眾分類系統下使用者的眼光
Who Can See the Trend of Internet?Finding User Insight in a Folksonomy
指導教授: 高宏宇
Kao, Hung-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 67
中文關鍵詞: 使用者眼光孤島類型眾所皆知類型以及急速發展類型時間序列社群關係
外文關鍵詞: user insight, isolated, well known, burgeoning, serial based, social relationship
相關次數: 點閱:90下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大眾分類系統提供了使用者自己定義以及分享各種資源的一種平台,近年來隨著技術上的演進,使用者與使用者之間的社群關係也越來越密切,如何在此類社群關係下找到具有領導指標的物件已經成為一個重要主題。以往過去在這方面的主題多偏向於研究找到高度熱門的網頁或者是專家。基於這點,我們會重新討論有關使用者的程度並提出了關於使用者眼光的新定義。首先在大眾分享系統內,能將網頁分成三種型態: 孤島類型、眾所皆知類型、以及急速發展類型。在我們的定義中,一個有眼光的使用者總是能比大家還早發現一個好網頁,如此一來找到一個會在將來急速發展網頁的價值將會高於一個眾所皆知類型的網頁。在我們的論文中,會先根據網頁時間序列的特性,建立一個演算法去估計使用者存取網頁所能得到的眼光值。另外我們會探討有關使用者建立在粉絲系統網上的社群關係,這關係到一個網頁是否能夠發展快速的另外一種途徑,之後我們會提出一個基於連結關係的方法對使用者眼光以及網頁發展性之間討論互相的影響。最後在我們實驗裡,將提出幾種驗證方式以比較我們的方法CAIS與過去的做法在效果上有何差異性,我們會針對找到網頁的排名以及模擬使用者在網頁時間軸上的分佈做分析與比較,在實驗裡我們會結合幾種方法以驗證在各種情況下,各類方法之間的差異性, 最後我們會從實驗結果中,驗證出我們的方法CAIS不論是找尋模擬的專家使用者分佈,或者是預測未來網頁發展上都有較好的結果。

    Folksonomy systems bring a way for users to share and organize bookmarks. The social relation between users and users become stronger with the rapid development of new technologies. How to find the leadership of objects has become an important topic. This theme of research always centralizes in finding the great popular pages or experts. We reform the definition of expertise and propose a new notion which we call user insight. At first, we refer the major three types of page to address the issue; we describe the three general types of page state in our definition, namely isolated, well known, and burgeoning. A user with good insight can always find a good page before than others do in our definition, it occurrence that the contribution of finding a burgeoning page is more than a well known page. In our paper, we build a time serial based algorithm to estimate the user insight. In addition, we discuss the social relationship in fans network, and proposed a linked based algorithm CAIS (Community based annotation Insight Search) to the reinforcement of users and pages. Finally, we design several experiments to evaluate the performance of methods and compare with other baseline ranking approaches. We prove that CAIS has the better performance by showing a simulation case of user ranking and the real case data prediction experiments with different setting.

    中文摘要 IV 致謝 V CONTENT VI FIGURE LISTING VIII TABLE LISTING X ABSTRACT 11 1. INTRODUCTION 17 1.1 Background 17 1.2 Motivation 20 1.3 Preliminary 22 1.4 Paper structure 25 2. RELATED WORK 26 2.1 Link model analysis 26 2.2 Social bookmark analysis and research 29 2.3 User insight ranking 30 3. METHOD 32 3.1 User insight 32 3.1.1 Overview 32 3.1.2 Annotation insight 33 3.2 CAIS algorithm 37 3.2.1 Link model algorithm 37 3.2.2 Parameter controlling of Linking relation 40 3.3 Method framework 41 4. EXPERIMENTS 42 4.1 Preliminary setup 42 4.2 Evaluation measure 44 4.2.1 Mean average precision 44 4.2.2 NDCG 44 4.3 Experiment process 45 4.3.1 Description of comparing method 45 4.3.2 Environment setting and purpose 46 4.4 Ranking results 52 4.4.1 Simulation user analysis 52 4.4.2 Page distribution analysis in manual set 55 4.4.3 Real case ranking in automatic set 56 4.4.4 User distribution analysis 60 4.4.5 Adjustment of the algorithm parameter 62 5. CONCLUSIONS AND FUTURE WORK 63 5.1 Conclusions 63 5.2 Future work 64 6. REFERENCES 65

    [1] E. Agichtein, E. Brill, and S. Dumais, "Improving web search ranking by incorporating user behavior information," in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval Seattle, Washington, USA: ACM, 2006.
    [2] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su, "Optimizing web search using social annotations," in Proceedings of the 16th international conference on World Wide Web Banff, Alberta, Canada: ACM, 2007.
    [3] M. T. H. Chi., "Two approaches to the study of experts'characteristics.," Cambridge Handbook of Expertise and Expert Performance, 2006.
    [4] Y. Fu, R. Xiang, Y. Liu, M. Zhang, and S. Ma, "Finding Experts Using Social Network Analysis," in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence: IEEE Computer Society, 2007.
    [5] K. Fujimura, T. Inoue, and M. Sugisaki, "The EigenRumor Algorithm for Ranking Weblogs," 2nd Annual Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics on World Wide Web, 2005.
    [6] G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu, "Parameter free bursty events detection in text streams," in Proceedings of the 31st international conference on Very large data bases Trondheim, Norway: VLDB Endowment, 2005.
    [7] M. Goetz, J. Leskovec, M. McGlohon, and C. Faloutsos, "Modeling Blog Dynamics," in ICWSM, 2009.
    [8] P. Heymann, G. Koutrika, and H. Garcia-Molina, "Fighting spam on social web sites : A survey of approaches and future challenges," IEEE Internet Computing, 2007.
    [9] P. Heymann, G. Koutrika, and H. Garcia-Molina, "Can social bookmarking improve web search?," in Proceedings of the international conference on Web search and web data mining Palo Alto, California, USA: ACM, 2008.
    [10] P. Heymann, D. Ramage, and H. Garcia-Molina, "Social tag prediction," in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval Singapore, Singapore: ACM, 2008.
    [11] K. Jarvelin and J. Kekalainen, "IR evaluation methods for retrieving highly relevant documents," in Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval Athens, Greece: ACM, 2000.
    [12] L. J. Jensen, J. Saric, and P. Bork, "Literature mining for the biologist: from information retrieval to biological discovery," Nature Reviews Genetics, vol. 7, pp. 119-129, 2006.
    [13] S. Ji, K. Zhou, C. Liao, Z. Zheng, G.-R. Xue, O. Chapelle, G. Sun, and H. Zha, "Global ranking by exploiting user clicks," in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval Boston, MA, USA: ACM, 2009.
    [14] T. Joachims, "Optimizing search engines using clickthrough data," in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining Edmonton, Alberta, Canada: ACM, 2002.
    [15] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," J. ACM, vol. 46, pp. 604-632, 1999.
    [16] R. Kumar, J. Novak, P. Raghavan, and A. Tomkins, "On the Bursty Evolution of Blogspace," World Wide Web, vol. 8, pp. 159-178, 2005.
    [17] R. Li, S. Bao, Y. Yu, B. Fei, and Z. Su, "Towards effective browsing of large scale social annotations," in Proceedings of the 16th international conference on World Wide Web Banff, Alberta, Canada: ACM, 2007.
    [18] C.-H. Lo, W.-C. Peng, and M.-F. Chiang, "Ranking Web Pages from User Perspectives of Social Bookmarking Sites," in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01: IEEE Computer Society, 2008.
    [19] Y. Matsuo and H. Yamamoto, "Community gravity: measuring bidirectional effects by trust and rating on online social networks," in Proceedings of the 18th international conference on World wide web Madrid, Spain: ACM, 2009.
    [20] M. G. Noll, C.-m. A. Yeung, N. Gibbins, C. Meinel, and N. Shadbolt, "Telling experts from spammers: expertise ranking in folksonomies," in Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval Boston, MA, USA: ACM, 2009.
    [21] L. Page, S. Brin, R. Motwani, and T. Winograd, "The PageRank Citation Ranking: Bringing Order to the Web," Stanford InfoLab1999.
    [22] A. Penev and R. K. Wong, "TagScore: Approximate Similarity Using Tag Synopses," in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Volume 01: IEEE Computer Society, 2008.
    [23] S. Sen, J. Vig, and J. Riedl, "Tagommenders: connecting users to items through tags," in Proceedings of the 18th international conference on World wide web Madrid, Spain: ACM, 2009.
    [24] Y. Song, Z. Zhuang, H. Li, Q. Zhao, J. Li, W.-C. Lee, and C. L. Giles, "Real-time automatic tag recommendation," in Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval Singapore, Singapore: ACM, 2008.
    [25] F. M. Suchanek, M. Vojnovic, and D. Gunawardena, "Social tags: meaning and suggestions," in Proceeding of the 17th ACM conference on Information and knowledge management Napa Valley, California, USA: ACM, 2008.
    [26] X. Wu, L. Zhang, and Y. Yu, "Exploring social annotations for the semantic web," in Proceedings of the 15th international conference on World Wide Web Edinburgh, Scotland: ACM, 2006.
    [27] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and W. Fan, "Optimizing web search using web click-through data," in Proceedings of the thirteenth ACM international conference on Information and knowledge management Washington, D.C., USA: ACM, 2004.

    下載圖示 校內:2011-08-27公開
    校外:2012-08-27公開
    QR CODE