簡易檢索 / 詳目顯示

研究生: 徐岳廷
Hsu, Yue-Ting
論文名稱: 多變數模型預測控制利用非線性自我回歸滑動平均沃爾泰拉模型於神經群模型癲癇抑制
Multivariable Model Predictive Control using a Nonlinear Autoregressive Moving-Average Volterra Model for Seizure Suppression in Neural Mass Models
指導教授: 游本寧
Yu, Pen-Ning
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 90
中文關鍵詞: 癲癇抑制神經群模型深腦電刺激非線性自我回歸移動平均沃爾泰拉模型模型預測控制
外文關鍵詞: seizures suppression, neural mass model, deep brain stimulation, nonlinear autoregressive moving-average Volterra model, model predictive control
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癲癇是一種大腦異常放電引起的神經系統疾病,其中部分患者為雙側內側顳葉癲癇,其兩側顳葉區域皆可能產生異常放電,導致兩側腦區之間產生互相影響的繼發性反應。現有的藥物及手術切除治療仍難以完全根治,而神經電刺激提供了另一種可行的治療方式,其中閉迴路深腦電刺激能根據大腦的癲癇狀態調整最佳的電刺激強度並施加至目標區域,進而調節神經放電活動。為了抑制癲癇狀態,過去已有研究提出比例積分微分控制器、模糊控制以及模型預測控制等,相較於這些傳統的線性或單輸入單輸出的控制方法,非線性自我迴歸移動平均沃爾泰拉模型適用於構建神經系統或顱內腦電圖訊號之間的多變數非線性動態系統模型。與過去研究僅局限於特定腦區異常放電的局部性癲癇不同,透過結合兩個神經群模型模擬左右腦區的相互作用,可用以模擬雙側內側顳葉癲癇狀態並利用模型預測控制進行多變數的同步抑制與降低能量消耗。本研究旨在抑制由兩個神經群模型的相互作用模擬所產生的雙側內側顳葉癲癇,結合模型預測控制與非線性自我迴歸移動平均沃爾泰拉模型,擬合出多變數輸入輸出的非線性癲癇動態,並進行多變數狀態控制,以達到抑制雙側內側顳葉癲癇的效果,並使用平均功率評估控制表現。在模型訓練上,利用了Laguerre展開法來降低約93.64%參數計算數量,在不增加參數數量的情況下,將原本較長的記憶長度用更少的係數來描述或計算,且不影響其預測效果。隨後在抑制結果上,模型預測控制在兩腦區平均抑制時間分別為0.32s與0.37s,能量消耗上兩腦區平均功率分別為的1258mV^2以及1044mV^2,模型預測控制與開迴路電刺激相比,不僅能更快地將癲癇抑制,也大幅降低約92%與93%能量的消耗。雖然本研究仍需調整以符合臨床條件,但其在非線性動態建模與模型預測控制上的成果,為未來雙側癲癇電刺激治療的優化與臨床實作提供了可行的發展方向。

    Epilepsy is a neurological disorder caused by abnormal neuronal discharges in the brain. Some patients suffer from bilateral mesial temporal lobe epilepsy (BMTLE), in which abnormal discharges may occur in both temporal lobes, leading to secondary responses due to interactions between the two brain regions. Currently, treatment options such as antiepileptic medications and surgical resection still fail to achieve complete remission in many patients, whereas neurostimulation has emerged as a feasible alternative therapeutic approach. In particular, closed-loop deep brain stimulation can adaptively adjust the optimal stimulation intensity according to the epileptic state of the brain, thereby modulating neuronal firing activity. To suppress epileptic states, nonlinear autoregressive moving-average Volterra model (NARMA Volterra model) are more suitable for constructing multivariate nonlinear dynamical models of neural systems or intracranial electroencephalography (iEEG) signals than conventional linear or single-input single-output control methods. Previous studies have primarily focused on focal seizures involving abnormal discharges in a single brain region. In contrast, this study employs the interaction of two neural mass model (NMM) to simulate BMTLE and applies model predictive control (MPC) to achieve multivariate synchronous suppression. The objective of this study is to suppress BMTLE simulated by the interaction of two NMMs. By integrating MPC with the NARMA Volterra model, we approximate multivariate input-output nonlinear epileptic dynamics and perform multivariate state control, thereby achieving suppression of BMTLE while reducing energy consumption. Control performance is evaluated using average power consumption as the performance metric.

    摘要II 致謝X 目錄XII 表目錄XIV 圖目錄XV 符號表XVIII 第一章緒論1 1.1癲癇(Seizure)1 1.2神經群模型(Neural mass model, NMM)2 1.3深腦電刺激(Deep brain stimulation, DBS)3 1.4模型預測控制(Model predictive control, MPC)4 1.5非線性自我迴歸移動平均沃爾泰拉模型(Nonlinear autoregressive moving-average Volterra model, NARMA Volterra Model)6 1.6研究目的與動機7 第二章方法9 2.1神經群模型架構10 2.2深腦電刺激模擬訊號16 2.3NARMA Volterra預測模型20 2.4模型預測控制架構24 2.5能量功率評估31 第三章實驗結果33 3.1模型訓練資料33 3.2NARMA Volterra模型訓練結果35 3.3模型預測控制結果44 3.3.1模型預測控制癲癇抑制結果45 3.3.2開迴路電刺激與模型預測控制抑制結果比較51 第四章討論58 4.1控制系統即時實現可行性58 4.2電刺激單位設置58 4.3神經群模型參數生理變異性59 4.4臨床常用刺激波形59 4.5Volterra kernels可解釋性分析62 第五章結論與未來展望64 5.1結論64 5.2未來展望65 參考文獻67

    [1]R. S. Fisher et al., “ILAE Official Report: A practical clinical definition of epilepsy,” Epilepsia, vol. 55, no. 4, pp. 475–482, 2014.
    [2]O. Devinsky, T. Spruill, and D. Thurman, “Recognizing and preventing epilepsy-related mortality,” Neurology, vol. 86, no. 8, pp. 779–786, Feb. 2016.
    [3]W. O. T. Iv, “Mesial Temporal Lobe Epilepsy,” vol. 29, no. 5, 2012.
    [4]S. L. Moshé, E. Perucca, P. Ryvlin, and T. Tomson, “Epilepsy: new advances,” The Lancet, vol. 385, no. 9971, pp. 884–898, Mar. 2015.
    [5]K. Vonck, P. Boon, E. Achten, J. De Reuck, and J. Caemaert, “Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy,” Annals of Neurology, vol. 52, no. 5, pp. 556–565, 2002.
    [6]M. C. H. Li and M. J. Cook, “Deep brain stimulation for drug-resistant epilepsy,” Epilepsia, vol. 59, no. 2, pp. 273–290, 2018.
    [7]V. Nagaraj et al., “Future of Seizure Prediction and Intervention: Closing the Loop,” Journal of Clinical Neurophysiology, vol. 32, no. 3, p. 194, June 2015.
    [8]A. Berényi, M. Belluscio, D. Mao, and G. Buzsáki, “Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation,” Science, vol. 337, no. 6095, pp. 735–737, Aug. 2012.
    [9]R. A. Sandler et al., “Designing Patient-Specific Optimal Neurostimulation Patterns for Seizure Suppression,” Neural Computation, vol. 30, no. 5, pp. 1180–1208, May 2018.
    [10]P. Perucca, F. Dubeau, and J. Gotman, “Intracranial electroencephalographic seizure-onset patterns: effect of underlying pathology,” Brain, vol. 137, no. 1, pp. 183–196, Jan. 2014.
    [11]F. Wendling, F. Bartolomei, J. J. Bellanger, and P. Chauvel, “Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition,” Eur J of Neuroscience, vol. 15, no. 9, pp. 1499–1508, May 2002.
    [12]S. Chang et al., “Model Predictive Control for Seizure Suppression Based on Nonlinear Auto-Regressive Moving-Average Volterra Model,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 10, pp. 2173–2183, Oct. 2020.
    [13]蔡明倫, “定向轉移函數基於卷積神經網路與 L1 正則化線性迴歸之癲癇預測,” 碩士論文,國立成功大學機械工程學系,臺灣臺南市, 2022.
    [14]B. H. Jansen, G. Zouridakis, and M. E. Brandt, “A neurophysiologically-based mathematical model of flash visual evoked potentials,” Biol. Cybern., vol. 68, no. 3, pp. 275–283, Jan. 1993.
    [15]F. He and Y. Yang, “Nonlinear System Identification of Neural Systems from Neurophysiological Signals,” Neuroscience, vol. 458, pp. 213–228, Mar. 2021.
    [16]B. Hu, Z. Wang, M. Xu, D. Zhang, and D. Wang, “The adjustment mechanism of the spike and wave discharges in thalamic neurons: a simulation analysis,” Cogn Neurodyn, vol. 16, no. 6, pp. 1449–1460, Dec. 2022.
    [17]J. Wang, E. Niebur, J. Hu, and X. Li, “Suppressing epileptic activity in a neural mass model using a closed-loop proportional-integral controller,” Sci Rep, vol. 6, no. 1, p. 27344, June 2016
    [18]王世宇/Wang S.-Y., “運用密度式神經塊模型探討 NMDA 受體於局部大腦皮質網路動力學的影響/Application of density-based neural mass model to the effects of NMDA receptor on the local cerebral cortex network dynamics,” 碩士論文,國立成功大學機械工程學系,臺灣臺南市, 2022.
    [19]Y. Cao, K. Ren, F. Su, B. Deng, X. Wei, and J. Wang, “Suppression of seizures based on the multi-coupled neural mass model,” Chaos, vol. 25, no. 10, p. 103120, Oct. 2015.
    [20]Z. Liang, Z. Luo, K. Liu, J. Qiu, and Q. Liu, “Deep Koopman-operator based model predictive control for closed-loop electrical neurostimulation in epilepsy,” Aug. 20, 2022.
    [21]N. Chakravarthy, S. Sabesan, K. Tsakalis, and L. Iasemidis, “Controlling epileptic seizures in a neural mass model,” J Comb Optim, vol. 17, no. 1, pp. 98–116, Jan. 2009.
    [22]G. Acharya, S. F. Ruf, and E. Nozari, “Brain modeling for control: A review,” Front. Control Eng., vol. 3, Dec. 2022.
    [23]C. Cuello Oderiz et al., “Association of Cortical Stimulation–Induced Seizure With Surgical Outcome in Patients With Focal Drug-Resistant Epilepsy,” JAMA Neurology, vol. 76, no. 9, pp. 1070–1078, Sept. 2019.
    [24]A. Ramirez-Zamora et al., “Evolving Applications, Technological Challenges and Future Opportunities in Neuromodulation: Proceedings of the Fifth Annual Deep Brain Stimulation Think Tank,” Front. Neurosci., vol. 11, Jan. 2018.
    [25]R. S. Fisher and A. L. Velasco, “Electrical brain stimulation for epilepsy,” Nat Rev Neurol, vol. 10, no. 5, pp. 261–270, May 2014.
    [26]S. Järvenpää, J. Peltola, S. Rainesalo, E. Leinonen, K. Lehtimäki, and K. Järventausta, “Reversible psychiatric adverse effects related to deep brain stimulation of the anterior thalamus in patients with refractory epilepsy,” Epilepsy & Behavior, vol. 88, pp. 373–379, Nov. 2018.
    [27]Y. Ge et al., “Robust closed-loop control of spike-and-wave discharges in a thalamocortical computational model of absence epilepsy,” Sci Rep, vol. 9, no. 1, p. 9093, June 2019.
    [28]P. Ghasemi, T. Sahraee, and A. Mohammadi, “Closed- and Open-loop Deep Brain Stimulation: Methods, Challenges, Current and Future Aspects,” J Biomed Phys Eng, vol. 8, no. 2, pp. 209–216, June 2018.
    [29]S.-Y. Lee, Z.-X. Liao, I.-T. Feng, H.-Y. Lee, and C.-C. Lin, “Charge-Mode Neural Stimulator With a Capacitor-Reuse Residual Charge Detector and Active Charge Balancing for Epileptic Seizure Suppression,” IEEE Transactions on Biomedical Circuits and Systems, vol. 18, no. 5, pp. 1065–1078, Oct. 2024.
    [30]廖啟仲, “應用於癲癇抑制之光電刺激系統與癲癇辨識演算法硬體設計,” 碩士論文,國立成功大學電機工程學系,臺灣臺南市,2018.
    [31]陳狄欣/Chen T.-H., “隨機非同步協調復位電刺激於顳葉癲癇抑制研究/Research on Suppression of Temporal Lobe Epilepsy by Random Coordinated Reset Stimulation,” 碩士論文,國立成功大學機械工程學系,臺灣臺南市, 2022.
    [32]林伯睿, “閉迴路深顱電刺激應用於大鼠癲癇抑制之長期效益分析,” 碩士論文,國立成功大學資訊工程學系,臺灣臺南市,2016.
    [33]C.-H. Cheng et al., “A Fully Integrated 16-Channel Closed-Loop Neural-Prosthetic CMOS SoC With Wireless Power and Bidirectional Data Telemetry for Real-Time Efficient Human Epileptic Seizure Control,” IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3314–3326, Jan. 2018.
    [34]F. T. Sun and M. J. Morrell, “Closed-loop Neurostimulation: The Clinical Experience,” Neurotherapeutics, vol. 11, no. 3, pp. 553–563, July 2014.
    [35]H. Peng, H. Shioya, X. Peng, and K. Sato, “Nonlinear MPC based on the state-space form of RBF-ARX model,” in Proceedings of the 2004 IEEE International Conference on Control Applications, 2004. Sept. 2004, pp. 1679-1684 Vol.2.
    [36]J. K. Gruber, J. L. Guzmán, F. Rodríguez, C. Bordons, M. Berenguel, and J. A. Sánchez, “Nonlinear MPC based on a Volterra series model for greenhouse temperature control using natural ventilation,” Control Engineering Practice, vol. 19, no. 4, pp. 354–366, Apr. 2011.
    [37]M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,” Int J Adv Manuf Technol, vol. 117, no. 5, pp. 1327–1349, Nov. 2021.
    [38]G. Hillerström and K. Walgama, “Repetitive Control Theory and Applications - A Survey,” IFAC Proceedings Volumes, vol. 29, no. 1, pp. 1446–1451, June 1996.
    [39]A. Haddock, A. Velisar, J. Herron, H. Bronte-Stewart, and H. J. Chizeck, “Model predictive control of deep brain stimulation for Parkinsonian tremor,” in 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), May 2017, pp. 358–362.
    [40]J. Slotine, “Applied nonlinear control,” Prentice Hall. 1991.
    [41]H.-G. Han, L. Zhang, Y. Hou, and J.-F. Qiao, “Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 2, pp. 402–415, Feb. 2016.
    [42]E. Kaiser, J. N. Kutz, and S. L. Brunton, “Sparse identification of nonlinear dynamics for model predictive control in the low-data limit,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2219, p. 20180335, Nov. 2018.
    [43]S. Chatterjee, O. Romero, A. Ashourvan, and S. Pequito, “Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy,” J. Neural Eng., vol. 17, no. 6, p. 066017, Feb. 2020.
    [44]W. Sun and R. D. Braatz, “ALVEN: Algebraic learning via elastic net for static and dynamic nonlinear model identification,” Computers & Chemical Engineering, vol. 143, p. 107103, Dec. 2020.
    [45]A. Draeger, S. Engell, and H. Ranke, “Model predictive control using neural networks,” IEEE Control Systems Magazine, vol. 15, no. 5, pp. 61–66, Oct. 1995.
    [46]E. Aggelogiannaki and H. Sarimveis, “Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models,” Computers & Chemical Engineering, vol. 32, no. 6, pp. 1225–1237, June 2008.
    [47]V. Volterra, “Theory of Functionals and of Integral and Integro-Differential Equations,” 1930.
    [48]H.-W. Chen, “Modeling and identification of parallel nonlinear systems: structural classification and parameter estimation methods,” Proceedings of the IEEE, vol. 83, no. 1, pp. 39–66, Jan. 1995.
    [49]F. J. Doyle, R. K. Pearson, and B. A. Ogunnaike, Identification and Control Using Volterra Models. in Communications and Control Engineering. London: Springer London, 2002.
    [50]F. J. Doyle, B. A. Ogunnaike, and R. K. Pearson, “Nonlinear model-based control using second-order Volterra models,” Automatica, vol. 31, no. 5, pp. 697–714, May 1995.
    [51]T. W. Berger et al., “A Hippocampal Cognitive Prosthesis: Multi-Input, Multi-Output Nonlinear Modeling and VLSI Implementation,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 20, no. 2, pp. 198–211, Mar. 2012.
    [52]J. K. Gruber, D. R. Ramirez, D. Limon, and T. Alamo, “Computationally efficient nonlinear Min–Max Model Predictive Control based on Volterra series models—Application to a pilot plant,” Journal of Process Control, vol. 23, no. 4, pp. 543–560, Apr. 2013.
    [53]V. Z. Marmarelis, Nonlinear dynamic modeling of physiological systems. in IEEE Press series in biomedical engineering. Hoboken, N.J: Wiley-Interscience, 2004.
    [54]P.-N. Yu, S. A. Naiini, C. N. Heck, C. Y. Liu, D. Song, and T. W. Berger, “A sparse Laguerre-Volterra autoregressive model for seizure prediction in temporal lobe epilepsy,” in 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Aug. 2016, pp. 1664–1667.
    [55]X. Wei, Y. Zhou, S. Chang, M. Lu, G. Yi, and J. Wang, “A Real-time Simulation Platform Design Based on Neural Mass Model for Deep Brain Stimulation,” in 2020 39th Chinese Control Conference (CCC), July 2020, pp. 5850–5855.
    [56]S. E. Eikenberry and V. Z. Marmarelis, “A nonlinear autoregressive Volterra model of the Hodgkin–Huxley equations,” J Comput Neurosci, vol. 34, no. 1, pp. 163–183, Feb. 2013.

    下載圖示
    校外:立即公開
    QR CODE