簡易檢索 / 詳目顯示

研究生: 陳哲培
Chen, Che-Pei
論文名稱: 以同軸電紡絲技術製備可光致變色之染料摻雜膽固醇液晶次微米纖維絲
Photo-controllable color of sub-micron fibers with dye-doped cholesteric liquid crystal based on coaxial electrospinning technique
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 71
中文關鍵詞: 膽固醇液晶同軸電紡絲光致同素異構化染料
外文關鍵詞: cholesteric liquid crystal, coaxial electrospinning, photoisomerization, dye
相關次數: 點閱:87下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文將成功利用同軸靜電紡絲技術製備出可光致變色之染料摻雜膽固醇液晶次微米纖維絲。實驗發現,在靜電紡絲過程中,聚合物濃度與溶液流速會影響到製成的纖維形態,其中包含串珠型、準連續型與溢出型三種。這三種型態中,準連續型較為實用之纖維。當聚合物濃度為17.5 wt%,且鞘層(聚合物溶液)與芯層(染料摻雜膽固醇液晶溶液)之流速比例在某特定範圍時,可成功製備出準連續形態之實用型液晶纖維,而此比例範圍會隨著外流速提升而增加。
    在光控研究方面,實驗結果發現,液晶纖維絲之反射特性(反射色彩與反射率)可由連續照射紫外與藍光作全光調控變化。當在染料摻雜膽固醇液晶次微米纖維絲樣品上照射一道弱紫外光(845µW/cm2),較低濃度之偶氮親手性分子由於trans-cis同素異構反應從棒狀trans態轉變至彎曲狀cis態進而局部擾動液晶秩序性,在尚無能力破壞螺旋結構下,造成膽固醇液晶螺距之拉伸,達到可光致液晶纖維反射顏色從藍色紅移至綠色。實驗亦發現纖維絲反射色彩繼續照射藍光後藍移回藍色,此乃由於照射藍光會引發cis-trans逆同素異構反應,偶氮親手性分子會從彎曲狀cis態回復至棒狀trans態,使得纖維內膽固醇液晶螺距回復。此外,直徑較粗的液晶纖維在照射相同時間之等強度紫外光後,因含有較高cis濃度,導致變色後所需回復時間較長。進一步,若照射紫外光強度提高三倍至2.75mW/cm2,由於引致的同素異構化反應劇烈許多,所產生的大量cis態偶氮親手性分子足以劇烈擾亂膽固醇液晶結構,導致液晶纖維絲反射色彩消失變暗;此外,直徑較細與較粗的液晶纖維在照射強紫外光後,因內部侷限強度與殘留的cis異構物濃度之差異,當照射藍光回復時,形成缺陷的情況亦有所不同。由上可知,此可光控液晶纖維絲可應用於紫外線感測元件與可穿戴式智能布料。

    This thesis successfully develops photo-controllable, colorful DDCLC sub-micron fibers through the coaxial electrospinning technique. Experimental results show that different polymer concentrations and feeding rates of the polymer solution and DDCLC can significantly cause different morphologies (appearances) of the formed fibers, including beading, quasi-continuous, and smearing-out types. Among these types, quasi-continuous LC fibers are practical for further application. Quasi-continuous fibers can be successfully fabricated at a polymer concentration of 17.5 wt% and specific ranges of ratio for the feeding rates of sheath (polymer solution) to core (DDCLC).
    Furthermore, the experimental results show that the reflective features (i.e., reflective color and reflectivity) can all be optically controlled by successive UV- and blue beam-irradiation. With the weak UV-irradiation (845 µW/cm2), only a few azo-chiral molecules become bended cis form through trans-cis isomerizations. As a consequence, the local order parameter of LCs may slightly decrease, thus extending the helical pitch of CLC without distorting the helical axis in the fibers. This condition results in the red-shift of the reflective color of LC fibers from blue to green. With the blue beam-irradiation following UV-irradiation, the cis isomers may revert to the rod-like trans state, resulting in the recovery of the helical pitch of the CLC in the fiber cores. The color of the fibers then blue-shifts back. Under the same conditions of UV-irradiation, if the fibers are thicker, the recovery time becomes longer because of the higher concentration of induced cis isomer. If the intensity of the UV-irradiation is enhanced to 2.75 mW/cm2, the induced massive cis isomers can also considerably disturb the helical structure of the CLC in the cores, thus eliminating the color reflectivity of the fibers. More defects remain in the thicker fibers after the blue beam-irradiation-induced recovery under the same conditions of UV and blue beam-irradiation. This condition is caused by the discrepancies between the confinement strengths and concentration of the residual cis isomer in thicker and thinner fibers. Based on the results, the optically controllable LC fibers have high potential for use in applications of UV micro-sensors and wearable smart textiles.

    摘要 I Abstract II Acknowledgement IV Contents V List of Figure VIII List of Table XV Chapter 1 Introduction 1 Chapter 2 Liquid Crystals 4 2.1 Definition of Liquid Crystals 4 2.2 Classification of Liquid Crystals 5 2.2.1 Lyotropic Liquid Crystals 5 2.2.2 Thermotropic Liquid Crystals 5 2.3 Physical Properties of Liquid Crystals 8 2.3.1 Optical Anisotropy 9 2.3.2 Dielectric Anisotropy 12 2.3.3 Elastic Continuum Theory of Liquid Crystals 13 Chapter 3 Cholesteric Liquid Crystals, Electrospinning Technique, and Photosensitive Materials 15 3.1 Optical Properties of Cholesteric Liquid Crystals 15 3.2 Influences on Pitch of Cholesteric Liquid Crystal 16 3.2.1 Temperature 17 3.2.2 Magnetic and Electric Fields 17 3.2.3 Optical Field 20 3.3 Electrospinning and Associated Background 20 3.4 Electrospinning Processes 21 3.4.1 Formation of a Taylor Cone and Jet Formation 21 3.4.2 Instability of the Jet and Fiber Stretching 23 3.4.3 Fiber Collection 24 3.4.4 Morphology of the Electrospun Fibers 24 3.5 Coaxial Electrospinning Technique 25 3.6 Photosensitive Materials 26 3.6.1 Photochromism 27 3.6.2 Photoisomerization of Azobenzene Derivatives 28 3.6.3 Photoisomerization of Dye-Doped Cholesteric Liquid Crystals 29 Chapter 4 Sample Preparation and Experimental Setups 34 4.1 Materials 34 4.2 Preparation for Coaxial Electrospinning 38 4.2.1 Cleaning of Glass Slides 38 4.2.2 Mixture of Sheath Solution and Core Solution 38 4.2.3 Injecting the Mixtures into Syringes 39 4.3 Experimental Setup 40 4.3.1 Coaxial Electrospinning in Generating Sub-Micron DDCLC/Polymer Coaxial Fibers 40 4.3.2 Observation of DDCLC/Polymer Coaxial Fibers 41 Chapter 5 Results and Discussion 43 5.1 Quasi-continuous Liquid Crystal Fibers 43 5.1.1 Morphologies of Liquid Crystal Fibers 43 5.1.2 Variation of Fiber Morphology with Concentration of Polymer Solution 44 5.2 Influences of Liquid Crystal Feeding Rate and Polymer Concentration on the Electrospun Fibers 52 5.2.1 Effect of Liquid Crystal Feeding Rate 52 5.2.2 Effect of PVP Concentration 54 5.3 Photo-Controllable Color of DDCLC Fibers 57 5.3.1 Director configuration of CLC inside Quasi-Continuous Electrospun Fiber 57 5.3.2 Planar DDCLC under UV Irradiation 58 5.3.3 Optically-Controllable Color of Electrospun Fibers with Various Core Diameters at UV- and Blue-Beam-Irradiations 60 Chapter 6 Conclusion and Future Works 67 6.1 Conclusion 67 6.2 Future Works 68 List of Reference 69

    1. J. T. McCann, D. Li, and Y. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures,” Journal of Materials Chemistry 15, 735–738 (2005).

    2. Y. Wu, Q. An, J. Yin, T. Hua, H. Xie, G. Li, and H. Tang, “Liquid crystal fibers produced by using electrospinning technique,” Colloid and Polymer Science 286, 897–905 (2008).

    3. A. Greiner, and J. H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers,” Angewandte Chemie 46, 5670–5703 (2007).

    4. X. Lu, C. Wang, and Y. Wei, “One-dimensional composite nanomaterials: synthesis by electrospinning and their applications,” Small 5, 2349–2370 (2009).

    5. T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. Li, and T. J. Bunning, “Electromechanical and light tunable cholesteric liquid crystals,” Optics Communications 283, 3434–3436 (2010).

    6. S.-Y. Lu, and L.-C. Chien, “A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection,” Applied Physics Letters 91, 131119 (2007).

    7. K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, “Fast switching of long-pitch cholesteric liquid crystal device,” Optics Express 19, 10174–10179 (2011).

    8. J. P. Lagerwall, J. T. McCann, E. Formo, G. Scalia, and Y. Xia, “Coaxial electrospinning of microfibres with liquid crystal in the core,” Chemical communications, 5420–5422 (2008).

    9. E. Enz, U. Baumeister, and J. Lagerwall, “Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres,” Beilstein journal of organic chemistry 5, 58 (2009).

    10. E. Enz, and J. Lagerwall, “Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal,” Journal of Materials Chemistry 20, 6866–6872 (2010).
    11. P. G. d. Gennes, and J. Prost, The Physics of Liquid Crystal (Oxford University Press, New York, 1993).

    12. S. Chandrasekhar, Liquid Crystal (Cambridge University Press, New York, 1992).

    13. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (John Wiley & Sons, New York, 1995).

    14. L. M. Blinov, and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1994).

    15. G. Chilaya, Cholesteric liquid crystal: Optics, electro-optics, and photo-optics, in Chirality in Liquid Crystals (Springer, New York, 2001).

    16. P. G. d. Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Communications 6, 163-165 (1968).

    17. R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals," Applied Physics Letters 12, 281–282 (1968).

    18. Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, “Compound core-shell polymer nanofibers by co-electrospinning,” Advanced Materials 15, 1929–1932 (2003).

    19. D. Li, and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?,” Advanced Materials 16, 1151–1170 (2004).

    20. Q. Li, Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications (Wiley, 2012).

    21. D. H. Reneker, and A. L. Yarin, “Electrospinning jets and polymer nanofibers,” Polymer 49, 2387–2425 (2008).

    22. P. Katta, M. Alessandro, R. D. Ramsier, and G. G. Chase, “Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector,” Nano Letters 4, 2215–2218 (2004).

    23. L. S. Carnell, E. J. Siochi, N. M. Holloway, R. M. Stephens, C. Rhim, L. E. Niklason, and R. L. Clark, “Aligned Mats from Electrospun Single Fibers,” Macromolecules 41, 5345–5349 (2008).

    24. D. Li, and Y. Xia, “Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Elcctrospinning,” Nano Letters 4, 933–938 (2004).

    25. H. Bouas-Laurent, and H. DÜRR, “Organic photochromism,” Pure and Applied Chemistry 73, 639–665 (2001).

    26. 楊博智,含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討 (國立成功大學化工研究所碩士論文,2003).

    27. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Optics Express 18, 9651–9657 (2010).

    28. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced Isotropic State of Cholesteric Liquid Crystals: Novel Dynamic Photonic Materials,” Advanced Materials 19, 3244–3247 (2007).

    29. G. Scalia, E. Enz, O. Calò, D. K. Kim, M. Hwang, J. H. Lee, and J. P. F. Lagerwall, “Morphology and Core Continuity of Liquid-Crystal-Functionalized, Coaxially Electrospun Fiber Mats Tuned via the Polymer Sheath Solution,” Macromolecular Materials and Engineering 298, 583–589 (2013).

    30. D. G. Yu, “A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution,” Express Polymer Letters 5, 732–741 (2011).

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE