簡易檢索 / 詳目顯示

研究生: 胡佩麗
Hu, Pei-Lee
論文名稱: 鋇鈷及鋇鉍氧化物合成與熱電性質之研究
Synthesis & Thermoelectric properties of Barium Cobaltates & Barium Bismuthates
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: BaCoO3BaBiO3熱電材料熱電係數
外文關鍵詞: BaCoO3, BaBiO3, thermoelectric, Seebeck coefficient
相關次數: 點閱:87下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相對傳統的合金熱電材料而言,氧化物熱電材料在空氣環境中具有更好的化學穩定性,因而更適合於中高溫區的應用。本實驗以固態反應法合成兩種複合氧化物材料,即 BaCoO3 和 BaBiO3,探討其熱電性質,以及改變氧計量比或摻雜其他元素對熱電性質的影響。X-射綫繞射證實在 800℃ 於空氣中結燒 24 小時可得單一相之 BaCoO3。若將燒結溫度升至 900℃ 以上,樣品會形成一種缺氧的新相 BaCoO2.6,密度亦隨之減少。若再將樣品於 800℃ 退火,缺氧相會變囘 BaCoO3,證明為可逆相變。熱電測量顯示,若樣品燒結溫度為 800℃,在 BaCoO3 中摻雜鎳與鋅不僅會使電阻率降低,也會提高熱電係數。若燒結溫度為 950℃ 隨後在 800℃ 退火,雖然 X-射綫繞射顯示樣品仍為 BaCoO3 相,但摻雜鎳與鋅會使電阻率上升,熱電係數下降。前者的熱電係數在 300700K 為正值,而後者的熱電係數在 300500K 為負值,500K 以上轉變為正值,顯示有兩種類型載子共存的現象。BaCoO3 系列樣品所測得的熱電功率因數皆很低,最佳值在 973K 時僅為 23 μWm-1k-2。BaBiO3 的合成條件為 800℃ 在空氣中燒結 12 小時,隨後在 600℃ 於氧氣中退火 24 小時以降低電阻率,其數值在室溫時約為 104 cm,在 973K 降為 5.95 cm,但仍然太大而不適合於熱電應用。

    Compared to the traditional thermoelectric alloys, oxide thermoelectrics have a better chemical stability in air and therefore are better suited for the applications in the mid to high temperature regions. In this thesis, two complex oxides, i.e. BaCoO3 and BaBiO3, were synthesized by the solid state reaction method and their potentials as the thermoelectric material were investigated. The influence of the oxygen stoichiometry and doping of other elements were also studied. X-ray diffraction (XRD) indicated that the BaCoO3 samples sintered at 800 C in air for 24 hrs had a pure phase. If the sintering temperature was raised to 900 C, an oxygen deficient phase, i.e. BaCoO2.6, was formed with a reduced density. The BaCoO3 phase could be recovered after the oxygen deficient phase was annealed at 800 C, indicating that the phase transition was reversible. Thermoelectric measurements showed that if the samples were prepared at 800 C, Ni or Zn doping would result in a decrease in electrical resistivity but an increase in Seebeck coefficient, however, if the samples were sintered at 900 C followed by annealing at 800 C, the Ni or Zn doping would result in opposite results although XRD indicated that both samples had the same BaCoO3 phase. The 800 C sintered samples had positive Seebeck coefficients at 300700 K, while the Seebeck coefficients of the 800 C annealed samples showed negative values at 300500 K and then turned into positive values over 500 K, indicating the coexistence of both types of charge carriers. All the BaCoO3 samples showed small power factors with the highest value of 23 Wm-1K-2. The BaBiO3 samples of a pure phase were sintered in air at 800 C for 12 hrs, followed by annealing at 600 C in oxygen for 24 hrs to decrease the electrical resistivity, which had the values of 104 cm at room temperature and 5.95 cm at 973 K that were far too large for the thermoelectric application.

    摘要 I EXTENDED ABSTRACT III 誌謝 IX 表目錄 XIV 圖目錄 XV 第一章 簡介 1 1-1 前言 1 1-2 研究動機 7 第二章 理論基礎與文獻回顧 9 2-1熱電理論基礎 9 2-1-1 Seebeck效應 9 2-1-2 Peltier效應 12 2-1-3 Thomson效應 15 2-2熱電效應 16 2-3 載子濃度對熱電材料的影響 18 2-4熱傳導現象 21 2-5 電阻率 22 2-6 熱電塊材的製作方法 23 2-6-1固相合成法 23 2-7 熱電材料的應用 23 2-8 文獻回顧 25 2-8-1 BaCoO3 25 2-8-2 BaBiO3 26 第三章 實驗方法與步驟 28 3-1 粉體製備 28 3-1-1 BaCoO3 28 3-1-2 BaBiO3 31 3-2 材料性質分析 33 3-2-1 結晶相鑑定 33 3-2-2 燒結體密度量測 34 3-2-3 顯微結構分析 34 3-2-4熱差-熱重分析 (DTA/TGA) 測試 35 3-3 熱電性質量測 36 3-3-1導電率-溫度量測系統 36 3-3-2 Seebeck係數分析系統 36 第四章 結果與討論 38 4-1固相合成法BaCoO3、BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 及其熱電性質研究 38 4-1-1 X光繞射分析 38 4-1-2熱差分析量測 41 4-1-3 SEM表面微結構分析 43 4-1-4燒結體密度大小量測 47 4-1-5 EDS元素定量成分分析 48 4-1-6電性分析 49 4-1-7 Seebeck係數量測結果 53 4-1-8 power factor計算結果 56 4-2固相合成法BaBiO3其熱電性質研究 58 4-2-1 BaBiO3 燒結體之X光燒射分析 58 4-2-2 SEM表面微結構分析 62 4-2-3 燒結體密度大小量測 63 4-2-4 電性分析 64 4-2-5 Seebeck係數量測分析 66 4-2-6 power factor 計算結果 67 第五章 結論 68 參考文獻 70   表目錄 表 3 1 製造BaCoO3 與 BaBiO3 樣品成分表......29 表 4-1 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 800oC EDS 半定量元素分析 ...............48 表 4-2 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 950oC+退火800oC EDS 半定量元素分析.............48 表 4-3不同時間 BaBiO3 EDS 半定量元素分析......64 表 4-4 BaBiO3空氣與氧氣中退火之 EDS 半定量元素分析....64   圖目錄 圖 1 1溫差發電原理示意圖.........3 圖 1 2致冷晶片原理示意圖.........4 圖 1-3典型熱電材料ZT值隨溫度變化.......6 圖 2-1 Seebeck 效應之迴路示意圖.......10 圖 2-2 Seebeck 效應示意圖.........11 圖 2-3導體兩端溫度不同其費米能階示意圖.....12 圖 2-4 Peltier效應示意圖..........14 圖 2-5 Thomson效應示意圖.........16 圖 2-6 Seebeck 係數,導電率σ , 熱傳導率 k,隨著絕緣體和金屬材料之間的變化關系...........20 圖 2-7熱電材料應用...........24 圖 2-8 BaCoO3 晶格結構..........25 圖 2-9 BaBiO3晶格結構.......... 27 圖 3-1 BaCoO3粉體的固相反應製備過程.......30 圖 3-2 粉體BaBiO3的固相反應製備過程......32 圖 3-3高解析掃描電子顯微鏡.........35 圖 3-4 Seebeek/ R-T 係數測量系統.......37 圖 4-1組成成分BaCoO3-y (y=0 or 0.4) 空氣中24小時燒結在(a) 800, (b) 850, (c) 900, and (d) 950 C之XRD.......39 圖 4-2 組成BaCo1-xMxO3 (M=Ni or Zn, x=00.1) (在 800oC 空氣中燒結24小時 (a) x=0(無摻雜) (b) 摻雜 Zn 5% (c) 摻雜 Zn 10% (d) 摻雜 Ni 5% (e) 摻雜 Ni 10% 之XRD......... 40 圖 4-3 組成BaCo1-xMxO3 (M=Ni or Zn, x=00.1) (在 950oC 空氣中燒結24小時然後在800oC退火12小時 (a) x=0(無摻雜) (b) 摻雜 Zn 5% (c) 摻雜 Zn 10% (d) 摻雜 Ni 5% (e) 摻雜 Ni 10% 之XRD.....41 圖 4-4 BaCoO3重量損失與熱分析對溫度的關係.....43 圖 4-5 BaCoO3-y (y=0 or 0.4) 空氣中24小時燒結在不同溫度 SEM 表面分析.............44 圖 4-6 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) (在 800oC 空氣中燒結24小時) SEM 表面分析..........45 圖 4-7 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) (在 950oC 空氣中燒結 24 小時然後在 800oC 退火12小時不同摻雜成份 SEM 表面分析...46 圖 4-8 BaCoO3燒結體密度隨溫度的變化......47 圖 4-9 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 800oC 不同摻雜成份電阻率對溫度之分析圖...........50 圖 4-10 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 800oC 不同摻雜成份 log 導電率對 1/T 之分析圖..........51 圖 4-11 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 950 oC+退火 800oC 不同摻雜成份電阻率對溫度之分析圖.........52 圖 4-12 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 950 oC+退火 800oC 不同摻雜成份 log 電導率對 1/T 之分析圖........53 圖 4-13 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 800oC不同摻雜成份 Seebeck 係數對溫度之分析圖........55 圖 4-14 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 950oC +退火 800oC 不同摻雜成份Seebeck 係數對溫度之分析圖......56 圖 4-15 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 800oC 不同摻雜成份 Power factor 係數對溫度之分析........57 圖 4-16 BaCo1-xMxO3 (M=Ni or Zn, x=00.1) 950oC+退火800oC 不同摻雜成份 Power factor係數對溫度之分析.......58 圖 4-17 BaBiO3空氣中不同時間之XRD.......60 圖 4-18 BaBiO3空氣中燒結12小時與退火比較之XRD....61 圖 4-19成分BaBiO3氧氣中退火600 oC(24小時)之XRD....61 圖 4-20 BaBiO3空氣中不同時間SEM表面分析......62 圖 4-21 BaBiO3空氣中退火與氧氣中退火SEM表面分析...62 圖 4-22 BaBiO3 燒結體密度隨時間的變化.......63 圖 4-23 BaBiO3氧氣中退火之電阻率對溫度分析......65 圖4-24 BaBiO3氧氣中退火之導電率對1/T分析.....65 圖4-25 BaBiO3氧氣中退火之Seebeck 係數對溫度之分析....66 圖4-26 BaBiO3氧氣中退火之功率係數對溫度之分析....67

    [1] 黃振東、徐振庭, "熱電材料," 科學發展, 2013 年.
    [2] M. G. K. K. R. Poeppelmeier, Prog .Solid state chem, vol. 36, p. 40.
    [3] M. Shimada, Y. Takeda, H. Taguchi, F. Kanamaru, and M. Koizumi, "Growth of single crystals of BaFe4+O3(12L), BaNi4+O3(2L) and BaCo4+O3(2L) under high oxygen pressure," Journal of Crystal Growth, vol. 29, pp. 75-76, May 1975.
    [4] N. Raghu, V. Ravi, and T. R. N. Kutty, "ZnO varistors with BaCoO3−x (0.12>x>0) as the only formulating phase," Materials Research Bulletin, vol. 26, pp. 261-268, April 1991.
    [5] X. Li, Y. Luo, and X. Liu, "Preparation and electrical properties of perovskite ceramics in the system BaBi1−xSbxO3 (0≤x≤0.5)," Journal of Alloys and Compounds, vol. 509, pp. 5373-5375, 28 April 2011.
    [6] D. D. Pollock, "Thermoelectricity: Theory, Thermometry, Tool,," American Society for Testing and Materials, Philadelphia, PA, vol. ASTM Special Technical Publication 852, 1985.
    [7] T.J.Seebeck, "Magnetic polarization of metals and minerals," p. 265, 1823.
    [8] D.M.Rowe, "CRC Handbook of Thermoelectrics," 1994.
    [9] H. E. Duckworth, "Electricity and Magnetism," New York: Holt, Rinehart and Winston, pp. 180-181, 1960.
    [10] M. Ohtaki, "Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion," Novel Carbon Resour. Sci. Newsl, 2010.
    [11] Y. Yang, F. Y. Ma, C. H. Lei, Y. Y. Liu, and J. Y. Li, "Nonlinear asymptotic homogenization and the effective behavior of layered thermoelectric composites," Journal of the Mechanics and Physics of Solids, vol. 61, pp. 1768-1783, August 2013.
    [12] H. A. F. Charles P. Poole, Richard J. Creswick, "Superconductivity," pp. 475-476, 2013.
    [13] 葉建弦, "固態熱電材料在廢熱回收領域之應用," ITRI 工業技術研究院, 2014.
    [14] C. Felser, K. Yamaura, and R. J. Cava, "The Electronic Structure of Hexagonal BaCoO3," Journal of Solid State Chemistry, vol. 146, pp. 411-417, September 1999.
    [15] K. Yamaura, H. W. Zandbergen, K. Abe, and R. J. Cava, "Synthesis and Properties of the Structurally One-Dimensional Cobalt Oxide Ba1−xSrxCoO3 (0≤x≤0.5)," Journal of Solid State Chemistry, vol. 146, pp. 96-102, August 1999.
    [16] V. Pardo, P. Blaha, M. Iglesias, K. Schwarz, D. Baldomir, and J. E. Arias, "Magnetic structure and orbital ordering in BaCoO3 from first-principles calculations," Physical Review B, vol. 70, p. 144422, 29 October 2004.
    [17] B. Yan, M. Jansen, and C. Felser, "A large-energy-gap oxide topological insulator based on the superconductor BaBiO3," Nat Phys, vol. 9, pp. 709-711, November 2013.
    [18] D. Marx, P. Radaelli, J. Jorgensen, R. Hitterman, D. Hinks, S. Pei, et al., "Metastable behavior of the superconducting phase in the BaBi1-xPbxO3 system," Physical Review B, vol. 46, pp. 1144-1156, 1992.
    [19] Y. Horie, T. Fukami, and S. Mase, "First order structural phase transition in BaPb1−xBixO3 and the scaling law," Solid State Communications, vol. 62, pp. 471-474, May 1987.
    [20] "Synthesis, structure and superconductivity in theBa1−-xKxBiO3-y system,"
    Nature 333, pp. 836 - 838, 30 June 1988.
    [21] "Synthesis of Ba1-xKxBiO3 ceramic specimens:Electron paramagnetic resonance and microwave absorption," Phys. Rev. B vol. 53, 27 September 1995.
    [22] Y. Luo and X. Liu, "High temperature NTC BaTiO3-based ceramic resistors," Materials Letters, vol. 59, pp. 3881-3884, December 2005.
    [23] J. Ryu, K.-Y. Kim, J.-J. Choi, B.-D. Hahn, W.-H. Yoon, B.-K. Lee, et al., "Highly Dense and Nanograined NiMn2O4Negative Temperature coefficient Thermistor Thick Films Fabricated by Aerosol-Deposition," Journal of the American Ceramic Society, vol. 92, pp. 3084-3087, 2009.

    下載圖示 校內:2017-09-08公開
    校外:2017-09-08公開
    QR CODE