| 研究生: |
林睦軒 Lin, Mu-Hsuan |
|---|---|
| 論文名稱: |
可用能分析與經濟評估獨立混合式發電系統 Exergy Analysis and Economic Evaluation of Stand-Alone Hybrid Power Generation Systems |
| 指導教授: |
吳煒
Wu, Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 獨立型混合發電系統 、可用能分析 、乙醇重組器 |
| 外文關鍵詞: | Stand-Alone Hybrid Power Generation System, Exergy Analysis, Ethanol Steam Regormer(ESR) |
| 相關次數: | 點閱:46 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應全球節能減排趨勢和提倡獨立發電系統,各國致力發展潔淨次世代能源。氫能具有來源豐富、應用層面廣和低污染等優點,故可成為次世代綠色能源載體,目前產氫來源大多採用化石燃料為原料,此製程技術在未來而言將不適用,因而需發展潔淨製氫技術和獨立發電系統,本研究結合乙醇進料產氫設備與質子交換膜燃料電池發電系統,藉以熱力學第一、第二定律之「可用能分析法」,分析此發電系統之各組成子系統可用能損失和效率表現以及整體發電系統效率,藉由降低損失功提高整體系統效率,故可根據本研究結果來改善系統效率,以達到最佳化的發電效率
由熵分析,可以深入瞭解化學反應、熱傳和摩擦力這三種效應對熵增所造成的影響,以及熵增與產氫效率的關係。
可用能分析法設計出來的發電系統,再經由經濟分析(淨現值法,內部報酬率法,益本比法),找出最適合投資的專案與地點。
In the last few years, energy crisis's production, causes regarding the new energy to seek is urgent, thus the fuel cell is born, enables the new energy to have the new direction. Moreover, the increasingly serious environmental issues, green energy development is also becoming increasingly important. This paper presents a hybrid power systems design combined with solar and hydrogen energy to supply the load demand. Ethanol is fed into a reformer reactor to generate hydrogen in order to achieve the goal of green energy. Hydrogen supply to the proton exchange membrane fuel cell and solar complement each other with day to supply the load demand. Finally, analyze the cost-benefit by using NPV (Net Present Value, NPV), benefit ratio (Benefit-Cost Ratio, B/C), analysis of indicators to assess the design of these hybrid power systems economic benefits.
Using the exergy analysis system, in the energy which the analysis system transforms, available with loss part, seeks causes the system to affect a more remarkable main variable. Therefore discovers system's best operating condition is necessary.
By using the entropy analysis, the impact of chemical reactions, heat transfer and friction on entropy generation and the relation between entropy generation and hydrogen-producing efficiency have been investigated.
1. Hwang, J.J., et al., Dynamic modeling of a photovoltaic hydrogen fuel cell hybrid system. International Journal of Hydrogen Energy, 2009. 34(23): p. 9531-9542.
2. Gutiérrez Ortiz, F.J., et al., Process integration and exergy analysis of the autothermal reforming of glycerol using supercritical water. Energy, 2012. 42(1): p. 192-203.
3. Lopes, D.G., et al., Technical and economic analysis of a power supply system based on ethanol reforming and PEMFC. Renewable Energy, 2012. 45: p. 205-212.
4. M.J.Khan and M.T.lqbal, Dynamic modeling and simulation of a fuel cell generator. FUEL CELLS, 2005. 5: p. 97-104.
5. Mann, R.F., et al., Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 2000. 86: p. 173-180.
6. Ceraolo, M., C. Miulli, and A. Pozio, Modeling static and dynamic behaviour of porton exchange membrane fuel cells on a basis of electro-chemical description. Journal of Power Sources, 2003. 113: p. 131-144.
7. Gupta, B., et al., Crosslinked ion exchange membranes by radiation grafting of
styrene/divinylbenzene into FEP films. Journal of Membrane Science, 1996. 119: p. 231-238.
8. Tuckey, A.M. and J.N. Krase, A Low-Cost Inverter for Domestic Fuel Cell Applications. IEE 33rd Annual Power Electronics Specialists Conference, 2002. 1: p. 339-346.
9. Dongliang, W., et al., Exergy calculation method based on flowsheeting simulation and its application. Computers and Applied Chemistry(China), 2012. 29: p. 1069-1074.
10. Kotas, T.J., Exergy concepts for thermal plant: First of two papers on exergy techniques in thermal plant analys. International Journal of Heat and Fluid Flow, 1980. 2.
11. HINDERINK, A.P., et al., EXERGY ANALYSIS WITH A FLOWSHEETING SIMULATOR--I. THEORY; CALCULATING EXERGIES OF MATERIAL STREAMS. Chemical Engineering Science, 1996. 51(20): p. 4693-4700.
12. Fu, C. and T. Gundersen, Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy, 2012. 44(1): p. 60-68.
13. Gutiérrez Ortiz, F.J., et al., An energy and exergy analysis of the supercritical water reforming of glycerol for power production. International Journal of Hydrogen Energy, 2012. 37(1): p. 209-226.
14. Leo, T.J., J.A. Durango, and E. Navarro, Exergy analysis of PEM fuel cells for marine applications. Energy, 2010. 35(2): p. 1164-1171.
15. Sun, S., et al., Thermodynamic analysis of ethanol reforming for hydrogen production. Energy, 2012. 44(1): p. 911-924.
16. Van Der Heijden, H. and K.J. Ptasinski, Exergy analysis of thermochemical ethanol production via biomass gasification and catalytic synthesis. Energy, 2012. 46(1): p. 200-210.
17. Casas, Y., et al., Energy and exergy analysis of an ethanol fueled solid oxide fuel cell power plant. Chemical Engineering Journal, 2010. 162(3): p. 1057-1066.
18. Simpson, A. and A. Lutz, Exergy analysis of hydrogen production via steam methane reforming. International Journal of Hydrogen Energy, 2007. 32(18): p. 4811-4820.
19. Wang, S. and S. Wang, Exergy analysis and optimization of methanol generating hydrogen system for PEMFC. International Journal of Hydrogen Energy, 2006. 31(12): p. 1747-1755.
20. Song, S., S. Douvartzides, and P. Tsiakaras, Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications. Journal of Power Sources, 2005. 145(2): p. 502-514.
21. Obara, S. and I. Tanno, Exergy analysis of a regional-distributed PEM fuel cell system. International Journal of Hydrogen Energy, 2008. 33(9): p. 2300-2310.
22. Yilanci, A., I. Dincer, and H. Ozturk, Performance analysis of a PEM fuel cell unit in a solar–hydrogen system. International Journal of Hydrogen Energy, 2008. 33(24): p. 7538-7552.
23. Salemme, L., L. Menna, and M. Simeone, Thermodynamic analysis of ethanol processors – PEM fuel cell systems. International Journal of Hydrogen Energy, 2010. 35(8): p. 3480-3489.
24. Akyuz, E., et al., Hydrogen production probability distributions for a PV-electrolyser system. International Journal of Hydrogen Energy, 2011. 36(17): p. 11292-11299.
25. Joshi, A.S. and A. Tiwari, Energy and exergy efficiencies of a hybrid photovoltaic–thermal (PV/T) air collector. Renewable Energy, 2007. 32(13): p. 2223-2241.
26. Caliskan, H., I. Dincer, and A. Hepbasli, Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study. Applied Thermal Engineering, 2012.
27.Yilanci, A., I. Dincer, and H.K. Ozturk, A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science, 2009. 35(3): p. 231-244.
28.Ghadamian, H., K. Bakhtary, and S.S. Namini, An algorithm for optimum design and macro-model development in PEMFC with exergy and cost considerations. Journal of Power Sources, 2006. 163(1): p. 87-92.
29.李宗德 、陳家聲*, 我國四種再生能源產業的發展策略探討. 國立臺灣大學管理學院碩士在職專班商學組碩士論文, 2007.
30. Walsh, C. and P. Thornley, A comparison of two low grade heat recovery options. Applied Thermal Engineering, 2013. 53(2): p. 210-216.
31.Vlysidis, A., et al., A techno-economic analysis of biodiesel biorefineries: Assessment of integrated designs for the co-production of fuels and chemicals. Energy, 2011. 36(8): p. 4671-4683.
32.行政院經濟建設委員會, 台灣經濟發展政策演進圖解之建構. 2008.
33.周桂蘭, 楊昌中、 劉子衙, 能源價格波動對氫能技術佈局及節能減碳成效分析. 2011.
34.王信福、黃榮堯*, 建築用太陽能光電板饋電價格策略之研究. 國立中央大學營建管理研究所碩士論文, 2009.