| 研究生: |
林冠宇 Lin, Kuan-Yu |
|---|---|
| 論文名稱: |
電化學沈積之氧化亞銅其結晶結構及光電化學性質 Crystal Structure and Photoelectrochemical Properties of Electrodeposited Cuprous oxide |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 氧化亞銅 、可見光分解水 、電化學沈積法 、自組裝性質 |
| 外文關鍵詞: | Cuprous oxide, Electrochemical deposition, Water splitting, Self-assembly |
| 相關次數: | 點閱:91 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於不同的條件可以產生不同的結晶結構,所以藉由控制反應中的溫度、pH值、反應電位、沈積面積、反應時間等因素探討對於氧化亞銅鍍層結構的影響。結果顯示溫度與pH值的升高與變大均會造成結晶顆粒大小變大,結晶性更好。並以三個不同的反應電位來進行鍍層結構的探討,可發現當反應電位太大時,整個鍍層結構受到電流太大的影響而形成瘤狀結構。另外在沈積面積與反應時間方面,隨著不同的面積大小與時間長短,表面的鍍層結構也會隨之產生變化。
氧化亞銅自組裝性質近來有許多文獻進行討論,本研究是藉由電化學沈積法在固定電壓下控制反應的時間而得到緞帶狀之氧化亞銅結晶結構。且可從SEM及TEM圖上可以看出,在表面的成長方向開始改變時,可產生了許多緞帶狀結構的沈積,當反應繼續進行時,其結構會自行擴大形成交叉型的結晶結構。而從TEM及SAED圖譜可以瞭解此緞帶狀結構主要以(110)方向做橫向擴大,以(001)方向做縱向拉長,且整個緞帶狀結構是由許多小緞帶彼此相互平行堆疊而成。
基於氧化亞銅本身為具有2.0 eV能隙的p型半導體,極具太陽能轉換的潛力,可是因氧化亞銅的價帶位置太靠近於水的氧化電位,使得氧化亞銅在照光激發時,無法產生足夠的過電壓讓電洞將水分子氧化。因而本研究將經電沈積法所得到之氧化亞銅加入n型半導體氧化鎢組成一個Z-scheme的水分解系統,進行可見光分解水實驗,並接續以光電極方式進行光電化學分析;結果顯示可以懸浮方式在照光下分解水產生氫氣,且較高活性之氧化亞銅也具有較好之光電化學性質。
Cuprous oxide films are electrodeposited potentiostatically at different solution temperature, pH, reaction potential, deposited area, and reaction time onto polycrystalline ITO substrate from an alkaline copper(II) lactate solution. The results show that the crystal grain size will become larger and the crystallinity will get better with increasing the reaction temperature and pH. Three different reaction potentials can be used to discuss the effects of crystal structure, and the results show that the lump structure can be obtained due to the large current from large reaction potential. In addition, with changing the deposited area and reaction time can also affect the crystal structure of deposition surface.
In these few years, there are some studies discussing the self-assembly property of cuprous oxide, and in this work we use electrochemical deposition method under constant potential to produce the ribbon structure of cuprous oxide by controlling the reaction time. It can be observed from SEM and TEM images that the ribbon structure appears as the orientation of the layers start changing and it will enlarge itself to a crosshatch structure with the reaction proceeds. From TEM and SAED patterns we can realize that almost all of the nanoribbons are parallel with each other and grow along (110) orientation horizontally and (001) orientation vertically.
Cuprous oxide, a p-type semiconductor with a bandgap of ca. 2.0 eV, has attracted interest because of its potential applications in solar energy conversion. However, there is almost no overpotential available for water oxidation on illuminated cuprous oxide because the valence band edge of cuprous oxide is close to the oxidation potential of water. Therefore, we suggest that cuprous oxide prepared from electrodeposition could serve as a p-type semiconductor and in combination with an n-type semiconductor tungsten oxide to proceed with a so-called Z-scheme water splitting mechanism. The p/n particle suspension reaction can also be simulated by a p/n photoelectrolysis cell to discuss the photoelectrochemical properties of cuprous oxide. H2 can be produced in the particle suspension system, and the ED25 film exhibited a larger photocurrent, in consistent with the results of particle suspension system.
1.Buckley, “Crystal growth”, Harold Eugene (1897).
2.K. Johnsen, G. M. Kavoulakis, “Probing Bose-Einstein Condensation of Excitons with Electromagnetic Radiation”, Phys. Rev. Lett., 86, 858 (2001).
3.Mordechay Schlesinger, Milan Paunovic, “Modern Electroplating”, Electrochemical Society (2000).
4.Leidheiser Henry, “The corrosion of copper, tin, and their alloys”, Electrochemical Society (1971).
5.L. O. Grondahl, Science, 64, 306 (1926).
6.H. S. Potdar, N. Pavaskar, A. Mitra and A. P. B. Sinha, Sol. Energy Mater., 4, 291 (1981).
7.A. E. Rakhshani and J. Varghese, Sol. Energy Mater., 15, 237 (1987).
8.M. ristov, G. J. Sinadinovski and M. Mitreski, Thin solid films, 167, 309 (1988).
9.J. A. Switzer, Chem. Mater. , 8, 2499 (1996).
10.P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Mater., 11, 3512 (1999).
11.J. A. Switzer, H. M. Kothari, and E. W. Bohannan, J. Phys. Chem. B., 106, 4027 (2002).
12.P. Poizot, C. J. Hung, M. P. Nikiforov, E. W, Bohannan, and J. A. Switzer, Electrochemical and Solid-State Letters, 6, C21 (2003).
13.
(a) Y. Zhou, J. A. Switzer, “Electrochemical Deposition and Microstructure of Copper(I) Oxide Films”, Scripta Materialia, 38, 1731 (1998).
(b) E. W. Bohannan; M. G. Shumsky; J. A. Switzer Chem. Mater., 11, 2289 (1999).
(c) J. K. Barton, A. A. Vertegel, E. W. Bohannan, J. A. Switzer, “Epitaxial Electrodeposition of Copper(I) Oxide on Single-Crytsal Copper”, Chem. Mater., 13, 952 (2001).
(d) R. Liu, F. Oba, E. W. Bohannan, F. Ernst, J. A. Switzer , “Shape Control in Epitaxial electrodeposition: Cu2O Nanocubes on InP(001)”, Chem. Mater., 15, 4882 (2003)
(e) R. Liu, E. W. Bohannan, and J. A. Switzer, Appl. Phys. Letter, 83, 1944 (2003).
(f) F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, J. A. Switzer, “Epitaxial Growth of Cuprous Oxide Electrodeposited onto Semiconductor and Metal Substrates”, J. Am. Ceram. Soc., 88, 253 (2005).
(g)F. Oba, F. Ernst, Y. Yu, R. Liu, H. M. Kothari, J. A. Switzer, “Epitaxial Electrodeposition of High-Aspect-Ratio Cu2O(110) Nanostructures on InP(111)”, Chem. Mater., 17, 725 (2005).
14.Z. Wang, X. Chen, J. Liu, M. Mo, L. Yang, and Y. Qian, Solid state communication, 130, 585 (2004).
15.L. Manna, E. C. Scher, A. P. Alivisatos, J. Cluster Sci., 13, 521 (2002).
16.S. Mann, Angew. Chem. Int. Ed., 39, 3392 (2000).
17.J. H. Adair, E. Suvaci Curr. Opin. Colloid Interface Sci., 5, 160 (2000).
18.C. A. Orme, A. Nov, A. Wierzbicki, M. T. McBride, M. Grantham, H. H. Teng, P. M. Dove, J. J. De Yoreo, Nature 411 (2001) 775-779.
19.S. M, Lee; J. Cheon, Adv. Mater. 15 (2003) 441-444.
20.(a) Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie, H. Xu, Angew. Chem. Int. Ed., 42, 413 (2003). (b) Z. R. Tian, J. Liu, H. Xu, J. A. Voigt, B. Mckenzie, C. M. Matzke, Nano. Lett., 3, 179 (2003).
21.L. Gou; C. J. Murphy Nano. Lett., 3, 231 (2003).
22.D. Wang; M. Mo; D. Yu; L. Xu; F. Li; Y. Qian Cryst. Growth Des. 3, 717 (2003).
23.L. Gou; C. J. Murphy J. Mater. Chem., 14, 735 (2004).
24.Z. Wang; X. Chen; J. Liu; M. Mo; L. Yang; Y. Qian Solid-State Commun., 130, 585 (2004).
25.J. Oh, Y. Tak, J. Lee Electrochemical and Solid-State Letters, 7, C27 (2004).
26.L. M. Huang; H. T. Wang; Z. B. Wang; A. P. Mitra; D. Zhao; Y. H. Yan Chem. Mater., 14, 876 (2002).
27.W. Wang; O. K. Varghese; C. Ruan; M. Paulose; C. A. Grimes J. Mater. Res., 18, 2756 (2003).
28.W. H. Wang; G. Wang; X. Wang; Y. Zhan; Y. Liu; C. Zheng Adv. Mater., 14, 67 (2002).
29.Z. Chen; E. Shi; Y. Zheng; W. Li; B. Xiao; J. Zhuang J. Crystal Growth, 249, 294 (2003).
30.Y. Chang; H. C. Zeng Cryst. Growth Des., 4, 273 (2004).
31.M. J. Siegfried; K. S. Choi Adv. Mater., 16, 1743 (2004).
32.A. P. Alivisatos Science, 271, 933 (1996).
33.M. A. El-Sayed Acc. Chem. Res., 34, 257 (2001).
34.G .M. Whitesides, B. Grzybowski Science, 295, 2418 (2002).
35.W. U. Huynh, J. J. Dittmer, A. P. Alivisatos Science, 295, 2425 (2002).
36.A. Roos, T. Chibuye, and B. Karlson, Sol. Energy Mater., 7, 453 (1983).
37.A. E. Rakhshani, Solid State Electron., 29, 7 (1986).
38.A. E. Rakhshani, and J. Varghese, Phys. Stat. Sol. 101, 479 (1987).
39.S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, and A. Tanaka, J. Chem. Soc. Chem. Commun., 2185 (1998).
40.M. Hara, M. Komoda, H. Hasei, M. Yashima, S. Ikeda, T. Takata, J. N. Kondo, and K. Domen, J. Phys. Chem. B, 104, 780 (2000).
41.V. Georgieva, and M. Ristov, Sol. Energy Mater. Sol. Cells 73, 67 (2002).
42.B. Laik, P. Poizot, and J. Tarascon, J. Electrochem. Soc., 149, A251 (2000).
43.W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck, and E. W. McFarland, Sol. Energy Mater. Sol. Cells, 77, 229 (2003).
44.M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, and K. Domen, Chem. Commun., 3, 357 (1998).
45.P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, Chem. Commun., 12, 1069 (1999).
46.P. E. de Jongh, D. Vanmaekelbergh, and J. J. Kelly, J. Electrochem. Soc., 147, 486 (2000).
47.K. Sayama, R. Yoshida, H. Kusama, K. Okabe, Y. Abe, and H. Arakawa, Chem. Phys. Lett., 277, 387 (1997).
48.A. Kudo, H. kato, and I. Tsuji, Chem. Lett. 33, 1534 (2004).
49.H. kato, M. Hori, R. konda, Y. shimodaira, and A. Kudo, Chem. Lett., 33, 1348 (2004).
50.R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett., 344, 339 (2001).
51.K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, Chem. Commun., 23, 2416 (2001).
52.K. Sayama, K. Mukasa, R. Abe, Y. Abe, and H. Arakawa, J. Photochem. Photobiol. A 148, 71 (2002).
53.R. Abe, K. Sayama, K. Demen, and H. Arakawa, Chem. Phys. Lett. 362, 441(2002).
54.(a). Milan Paunovic, Mordechay Schlesinger, Fundamentals of Electrochemical Deposition, Electrochemical Society (1998).
(b). W. J. Lorenz, G. Staikov, “Electrochemical phase formation and growth :an introduction to the initial stages of metal deposition”, Electrochemical Society.
(c). B. H. Vassos, Electroanalytical chemistry, Galen Wood (1914).
(d). 胡啟章,”電化學原理與方法”,五南,2002。
55.M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions; NACE, Houston, TX, 1974.
56.J. A. Switzer, C. J. Hung, L. Y. Huang, F. S. Miller, Y. Zhou , E. R. Raub, M. G. Shumsky, E. W. Bohannan, “Potential oscillations during the electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Mater. Res., 13, 909 (1998).
57.J. A. Switzer, C. J. Hung, L. Y. Huang, E. R. Switzer, D. R.. Kammler, T. D. Golden, E. W. Bohannan, “Electrochemical self-assembly of copper/cuprous oxide layered nanostructures”, J. Am. Chem. Soc., 120, 3530 (1998).
58.J. A. Switzer, B. M. Maune, E. R. Raub, E. W. Bohannan, “Negative Differential Resistance in Electrochemically Self-Assembled Layered Nanostructures”, J. Phys. Chem. B, 103, 395 (1999).
59.S. Roy Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, Plenum Press (1980).
60.Allen J. Bard., Larry R. Faulkner, ‘’Electrochemical Methods, Fundamentals and Applications’’, John Wiley & Sons, New York (1980).
61.Mario Schiavello, Photoelectrochemistry, photocatalysis, and photoreactors: fundamentals and developments (1984).
62.吳浩青,李永舫,”電化學動力學”,科技圖書,2001。
63.M. Grätzel, Nature, 414, 338 (2001).
64.B. D. Cullity and S. R. Stock, Elements of x-ray diffraction (3rd edition), Prentice hall (2001).
65.A. J. Nozik, and R. Memming, J. Phys. Chem., 100, 13061 (1996).