| 研究生: |
謝博揚 Hsieh, Po-Yang |
|---|---|
| 論文名稱: |
逆向熱傳導問題之初始值預測 Estimation of Initial Value for Inverse Heat Conduction Problem |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 逆向熱傳導 、逆向問題 、初始值 |
| 外文關鍵詞: | Inverse problem, initial value |
| 相關次數: | 點閱:58 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討熱傳導問題在初始值為未知時,以特徵函數展開法(Eigenfunction expansion method)假設未知的初始條件,在某一特定時間下配合量測點溫度值以辛普生法(Simpson’s rule)求取展開式中各項係數值,進而求得問題之初始值。
本文將探討在量測點數量對於所求取之值的準確性、量測時間長短對於初始值預測的影響、以不同量測時間下所測得之溫度值做初始值預測以及當具有量測誤差時所對應求取的初始值影響。結果顯示,當量測時間較短時,則當量測點到達某一數量之後,不論是否有量測誤差,其皆可獲得好的預測結果;而當量測時間較長時,當初始值為一平滑曲線時,可獲得良好結果,但若初始值為不連續函數或是在空間域內變化較劇烈時,所求得之值相對較差,故本文將此一情形配合數個短時間量測值即可求取良好結果。
The study discusses the heat conduction problem when the initial value is unknown. Using the eigenfuction expansion method to express unknown initial value, at a particular time, we take the measured temperature value into Simpson’s rule to solve the coefficients of the expansion in order to get the initial value.
The study investigates into the accuracy of estimation value analyzed in different measurement point numbers, the effects of how long the time we analysis, estimates the initial value using the measurement value in different time, and the impact of estimation of initial value with measurement error. The results show that, in short time, we can get a good estimation in a particular number of measurement points whether or not the measurement error; on the other hand, in long time, we can also get good results for the initial value is a smooth curve. If the initial value is not a smooth curve or changes rapidly, we would not get great results, and we use several short-time-measured values to improve our estimation. As a result, the inverse algorithm of the study presents a good accuracy.
1. Han, H., Ingham, D. B., Evans, B. E., Remson, I., 1983, “The Boundary Element Method for the Solution of the Backward Heat Conductiom Equation,” Journal of Computational Physics, Vol. 116, No. 2, pp. 292-299.
2. Mera, N. S., Elliott, L., Ingham, D. B., Lesnic, D., 2001, “An Iterative Boundary Element Method for Solving the One-Dimensional Backward Heat Conduction Problem,” International Journal of Heat and Mass Transfer, Vol. 44, No. 10, pp. 1937-1946.
3. Mera, N. S., Elliott, L., Ingham, D. B., 2002, “An Inversion Method with Decreasing Regularization for the Backward Heat Conduction Problem,” Numerical Heat Transfer, Part B, Vol. 42, No. 3, pp. 215-230.
4. Jourhmane, M., Mera, N. S., 2002, “An Iterative Algorithm for the Backward Heat Conduction Problem Based on Variable Relaxation Factors,” Inverse Problems in Science and Engineering, Vol. 10, No. 4, pp. 293-308.
5. Muniz, W. B., de Campos Velho, F. M., 1999, “A Comparison of Some Inverse Methods for Estimating the Initial Condition of the Heat Equation,” Journal of Computational and Applied Mathematics, Vol.103, No. 1, pp. 145-163.
6. Muniz, W. B., Ramos, F. M., de Compos Velho, H. F.,2000, “Entropy and Tikhonov-Based Regularization Techniques Applied to the Backward Heat Equation, ” Computers and Mathematics with Applications, Vol. 40, No. 8, pp. 1071-1084.
7. Kirkup, S. M., Wadsworth, M., 2002, “Solution of Inverse Diffusion Problems by Operator-Splitting Methods,” Applied Mathematical Modeling, Vol. 26, No. 10, pp. 1003-1018.
8. Liu, J. J., 2002, “Numerical Solution of Forward and Backward Problem for 2-D Heat Conduction Equation,” Journal of Computational and Applied Mathematics, Vol. 145, No. 2, pp. 459-482.
9. Iijima, K., 2004, “Numerical Solution of Backward Heat Conduction Problems by a High Order Lattice-Free Finite Difference Method,” Journal of the Chinese Institute of Engineers, Vol. 27, No. 4, pp. 611-620.
10. Mera, N. S., 2005, “The Method of Fundamental Solutions for the Backward Heat Conduction Problem,” Inverse Problem in Science and Engineering, Vol. 13, No. 1, pp. 65-78.
11. Li, F. S., 2009, “Backward Solutions to Neumann and Dirichlet Problems of Heat-Conduction Equation,” Applied Mathematics and Computation, Vol. 210, No. 1, pp. 211-214.
12. Chiwiacowsky, L. D., de Campos Velho, H. F., 2003, “Different Approaches for the Solution of a Backward Heat Conduction Problem,” Inverse Problems in Science & Engineering, Vol. 11, No. 6, pp. 471-494.
13. 張建仁、劉進賢,國立台灣海洋大學,利用數種創新方法研究時間反向熱傳導問題及地下水汙染源辨識問題。
14. Liu Chein-Shan, 2011, “A Self-Adaptive LGSM to Recover Initial Condition or Heat Source of One-Dimensional Heat Conduction Equation by Using Only Minimal Boundary Thermal Data,” International Journal of Heat and Mass Transfer, Vol. 54, Issue 7-8, pp. 1305-1312.
15. Liu Chein-Shan, 2008, “An LGSM to Identify Nonhomogeneous Heat Conductivity Functions by an Extra Measurement of Temperature,” International Journal of Heat and Mass Transfer, Vol. 51, Issue 9-10, pp. 2603-2613.
16. Liu Chein-Shan, 2010, “A Two-Stage Lie-group Shooting Method (TSLGSM) to Identify Time-dependent Thermal Diffusivity,” International Journal of Heat and Mass Transfer, Vol. 53, Issue 21-22, pp. 4876-4884.
17. Liu Chein-Shan, 2010, “A High Accurate LGSM for Severly Ill-posed BHCP under a Large Noise on the Final Time Data,” International Journal of Heat and Mass Transfer, Vol. 53, Issue 19-20, pp. 4132-4140.