| 研究生: |
羅振豪 Luo, Cheng-Hau |
|---|---|
| 論文名稱: |
以光纖陣列為基礎之數位式滾筒模仁製程技術 A Digital Fabrication System of Roller Molds Based on Optical Fiber Arrays |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 數位微鏡裝置 、光纖陣列 、非球面微透鏡陣列 、滾筒模仁 |
| 外文關鍵詞: | Digital Micro-mirror Device, Fiber Array, Aspherical Lens, Roller Mold |
| 相關次數: | 點閱:130 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究發展一套可以在金屬滾筒上製作出任意圖形光阻微結構的數位式紫外光曝光系統,藉由數位光源處理技術產生數位影像,搭配光纖陣列與微透鏡陣列,完成曲面無光罩式的微影製程技術。首先,以曲面光阻噴塗系統,將光阻稀釋後均勻塗佈在直徑5公分、長度15公分的金屬滾筒模仁上;其次利用波長405 nm的紫外光當作光源,經過「數位微鏡裝置」(Digital Micro-mirror Device,DMD),以控制每一畫素的亮暗;再將來自DMD的紫外光導入2D光纖陣列內,利用光纖之低傳輸損失、可撓曲、可任意排列的特性,將2D光纖陣列轉換成1D光纖陣列;再利用本實驗室開發的準分子雷射微細加工法,於每一個光纖的出光口處,製作出對應的非球面微透鏡,並將紫外光聚焦成一微小光點,形成直線型的1D光點陣列;最後搭配精密位移平台和伺服馬達轉軸控制,配合DMD的電腦程式控制,可以在滾筒的光阻層上定義出任意的光阻圖案,進而利用化學濕式蝕刻將光阻結構轉移至金屬滾筒上。實驗結果顯示,利用此系統已成功在滾筒模仁上製作出最小線寬20 μm、線增量8 μm、幅寬100 mm之任意光阻結構。
This thesis investigates a digital ultraviolet (UV) light exposure system for fabricating microstructures of arbitrary patterns on the surface of a metallic roller mold. This system is based on digital light processing (DLP) technology and microlens/fiber arrays to achieve maskless and curved surface lithography. First of all, a spray coating system is used to uniformly coat a thin photo-resist layer onto the cylindrical surface of a roller mold. Secondly, UV light passing through a digital micromirror device (DMD) is projected onto a two-dimension (2D) 10x10 microlens/fiber array. The UV light fed into each microlens/fiber can be swiftly modulated by DMD. On the other end of the 100 fibers, a one-dimensional (1D) array of microlenses is fabricated and attached to the fibers. UV light coming out from each fiber is focused by its corresponding microlens into a small UV spot, and collectively a 1D array of UV spots is formed. By accurate mechanical alignment and precision control of both rotation and longitudinal scanning of the roller mold with respect to the 1D arrayed UV spots, one can achieve arbitrary photoresist patterns on the roller mold surface. Finally, the surface photoresist patterns are transferred to the metallic roller surface by etching process. From the experiment result, this system can successfully get a smallest linewidth of 20 μm、a line increment of 8 μm over a total patterning range 100 mm.
[1]. M. D. Fagan, B. H. Kim, and D. Yao, "A novel process for continuous thermal embossing of large‐area nanopatterns onto polymer films," Advances in Polymer Technology, vol. 28, pp. 246-256, 2009.
[2]. H. Tan, A. Gilberston, and S. Y. Chou, "Roller nanoimprint lithography," Journal of Vacuum Science & Technology B, vol 16, pp. 3926-3928, 1998.
[3]. N. Ishizawa, K. Idei, T. Himura, D. Noda. And T. Hattori, "Resin micromachining by roller hot embossing," Microsystem Technologies, vol. 14, pp. 1381-1388, 2008.
[4]. S.-Y. Yang, F.-S. Cheng, S.-W. Huang, and T.-C. Huang, "Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform," Microelectronic Engineering, vol. 85, pp. 603-609, 2008.
[5]. S.-J. Liu amd Y.-C. Chang, "A novel soft-mold roller embossing method for the rapid fabrication of micro-blocks onto glass substrates," Journal of Micromechanics and Microengineering, vol 17, p. 172, 2007.
[6]. http://www.adtek-precision.com/product_02.php?id=3&sid=2, 亞德科超精密有限公司。
[7]. 陳泓瑋,旋轉步階式曲面黃光微影技術製程應用於製作無縫滾輪模仁與微透鏡陣列光學膜,國立成功大學航空太空工程系碩士班碩士論文,中華民國99年7月。
[8]. 溫宗倫,曲面光束筆暨旋轉步階式微影技術應用於無縫滾筒模仁之製作,國立成功大學機械工程學系碩士班碩士論文,中華民國104年7月。
[9]. Chiu, C.-C. and Y.-C. Lee, "Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method," Optics Express, vol. 20, pp. 5922-5935, 2012.
[10]. K. Zimmer, D. Hirsch, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Applied Surface Science, vol. 96-98, pp. 425-429, 2012.
[11]. K. Naessens, H. Ottevaere, R.Beats, P. Van Daele, and H. Thienpont, "Direct writing of microlenses in polycarbonate with excimer laser ablation," Applied Optics, vol. 42, pp. 6349-6359, 2003.
[12]. K. Naessens, H. Ottevaere, P. Van Daele, and R.Beats, "Flexible fabrication of microlenses in polymer layers with excimer laser ablation," Applied Surface Science, vol. 208, pp. 159-164, 2003.
[13]. T. Masuzawa, J. Olde-Benneker, and J. Eindhoven, "A new method for three dimensional excimer laser micromachining, Hole Area Modulation (HAM)," CIRP Annals - Manufacturing Technology, vol. 49, pp. 139-142, 2000.
[14]. K. H. Choi, J. Meijer, T. Masuzawa, and D.-H. Kim, "Excimer laser micromachining for 3D microstructure," Journal of Materials Processing Technology, vol. 149, pp. 561-566, 2004.
[15]. J.-T. Wu, H.-C. Lai, S.-Y. Yang, T.-C. Huang, and S.-H. Wu, "Dip coating cooperated with stepped rotating lithography to fabricate rigid microstructures onto a metal roller," Microelectronic Engineering, vol. 87, pp. 2091-2096, 2010.
[16]. http://www.graco.com/us/en/products/finishing/airpro-efx-automatic-air-spray-gun.html, GRACO.
[17]. S.-W. Tsai, P.-Y. Chen, and T.-C. Lee, "Fabrication of a seamless roller mold with wavy microstructures using mask-less curved surface beam pen lithography," Journal of Micromechanics and Microengineering, vol. 24, pp. 045022, 2014.
[18]. F. Huo, G. Zheng, X. Liaom L. R. Giam, J. Chai, X. Chen, "Beam pen lithography," Nature Nanotechnology, vol. 5, pp. 637-640, 2010.
[19]. http://www.ti.com.tw/articles/detail.asp?sno=18, Texas Instrument
[20]. http://ietcap.rsh.ncku.edu.tw/ufiles/0000010/20131122113152uk.pdf, 滾印聯盟-莊承鑫-台南應用科技大學
[21]. https://zh.wikipedia.org/wiki/%E5%85%89%E5%B0%8E%E7%BA%96%E7%B6%AD