| 研究生: |
蔡傑丞 Tsai, Jie-Cheng |
|---|---|
| 論文名稱: |
磺化與硝化全芳香族高分子電解質薄膜之研究:合成、結構與性質 Study for Polymer Electrolyte Membranes of Sulfonated and Nitrated Fully Aromatic Polymers: Synthesis, Structure and Properties |
| 指導教授: |
郭人鳳
Kuo, Jen-Feng 陳志勇 Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 直接甲醇燃料電池 、甲醇透過率 、混摻 、磺酸化聚醚醚酮 、硝化 、高分子電解質膜 |
| 外文關鍵詞: | direct methanol fuel cell, methanol permeability, blend, sulfonated poly(etherether ketone), nitration, polymer electrolyte membrane |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磺酸化聚醚醚酮(SPEEK)經由親電子磺酸化反應,可在高分子主鏈上反應上親水性磺酸根基團,磺酸化程度可利用反應時間的控制加以調整;並進一步在高分子主鏈上進行硝化反應。磺化以及硝化反應是利用便宜且簡單的取代反應加以進行。硝化磺酸根聚醚醚酮(NSPEEK)和磺酸化聚醚醚酮相比較,具有較低的玻璃轉移溫度、不錯的熱裂解溫度以及低的水吸收度,可以在使用甲醇溶液為燃料的直接甲醇燃料電池(DMFC)操作下,提供足夠的機械強度。在不損失導電度之下,硝化磺酸根聚醚醚酮S53N22以及S63N17的甲醇透過率可分別降低至1.76 × 10–7 cm2 s–1 以及1.86 × 10–7 cm2 s–1,質子導電度可以到達0.026 S cm–1。NSPEEK具有比SPEEK更佳的導電度、水吸收度以及甲醇透過率,因此具有取代SPEEK的潛力。
加入具有低甲醇透過率之SPEEK和NafionR混摻形成混摻電解質薄膜。SPEEK可形成分散相並呈橢圓狀分散於NafionR連續相之中,利用SPEEK以及微結構的改變使NafionR/SPEEK混摻膜擁有較NafionR低的水吸收度,並利用相分離增加甲醇透過路徑,其同混摻量的SPEEK之甲醇透過率可以降低到1.70 × 10–6 – 9.09 × 10–7 cm2 s–1。混摻膜在30°C下,最高之導電度趨近於0.050 S cm–1。在80°C 下,SPEEK53在不同添加量之NafionR/SPEEK混摻膜,在DMFC單電池性能測試下,電池效能為15 – 25 mW cm–2;SPEEK63在不同添加量之混摻膜,電池效能為19 – 27 mW cm–2。電池效能以及開環電壓均高於NafionR,其電池效能為22 mW cm–2。NafionR/SPEEK混摻膜可以改進NafionR高甲醇透過率的現象並可降低薄膜厚度來增加電池效能以及NafionR使用量。
SPEEK經由進一步在高分子主鏈上進行硝化反應,再混摻於NafionR中。NSPEEK在混摻膜中形成liquid-liquid相分離,NSPEEK呈橢圓狀分散相,分散於NafionR連續相之中,利用NSPEEK具有比SPEEK低的甲醇透過率可以作為抗甲醇添加物,以及此微結構的改變使NafionR/NSPEEK混摻膜擁有較NafionR以及NafionR/SPEEK低的水吸收度。不同混摻量的S63N17,甲醇透過率可以降低到4.29 × 10–7 – 5.34 × 10–7 cm2 s–1;不同混摻量的S63N38,甲醇透過率可以降低到4.72 × 10–7 – 7.11 × 10–7 cm2 s–1。混摻膜在30°C下,最高之導電度趨近於0.085 S cm–1。在80°C 下,S63N17在不同混摻量之NafionR/NSPEEK混摻膜,在DMFC單電池性能測試下,電池效能為23 – 25 mW cm–2;S63N38在不同混摻量之混摻膜,電池效能為24 – 29 mW cm–2。電池效能以及開環電壓均高於NafionR以及NafionR/SPEEK。利用硝化導入混摻膜可大幅提升DMFC電池之效能。
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on a polymer main chain in concentrated sulfuric acid for a specified time. SPEEKs are further substituted on the polymer main chain by nitration. All sulfonation and nitration are achieved with an inexpensive and simple post substitute reaction. The nitrated SPEEKs (NSPEEK) have a lower glass transition temperature than SPEEK and moderate thermal decomposition temperature, and a lower water uptake than SPEEK, which provides sufficient mechanical strength without swelling in the direct methanol fuel cell (DMFC) application. The methanol permeability of nitrated SPEEKS is reduced to 1.76 × 10–7 cm2 s–1 for S53N22 and 1.86 × 10–7 cm2 s–1 for S63N17 with no loss of conductivity in the DMFC application, and a proton conductivity that reached 0.026 S cm–1. The nitrated SPEEK membranes satisfy the requirements of polymer electrolyte membranes for the DMFC.
SPEEKs are then blended with NafionR to create composite membranes. The blended SPEEK-containing membranes feature flaky domains dispersed in the NafionR matrix. These blends possess a high thermal decomposition temperature. Additionally, owing to the difference morphology from recast NafionR, the blended membranes have a lower water uptake, the methanol permeability is reduced to 1.70 × 10–6 – 9.09 × 10–7 cm2 s–1 for various SPEEK concentrations and a maximum proton conductivity of ~0.050 S cm–1 is observed at 30°C. The single-cell performances of the NafionR/SPEEK membranes, with various SPEEK concentrations and a certain degree of sulfonation, are 15 – 25 mW cm–2 for SPEEK53 and 19 – 27 mW cm–2 for SPEEK63, at 80°C. The power density and open circuit voltage are higher than those of NafionR 115 (power density=22 mW cm–2). The blended membranes satisfy the requirements of polymer electrolyte membranes for direct methanol fuel cell (DMFC) applications.
SPEEKs are substituted on the main chain of the polymer by nitro groups and blended with NafionR to attain composite membranes. The NafionR/NSPEEK blended membranes reveal a liquid–liquid phase separation. The blended membranes have a lower water uptake compared to recast NafionR and NafionR/SPEEK, and the methanol permeability is reduced significantly to 4.29 × 10–7 – 5.34 × 10–7 cm2 s–1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10–7 – 7.11 × 10–7 cm2 s–1 for S63N38, with a maximum proton conductivity of ~0.085 S cm–1. This study examines the single-cell performance at 80°C of NafionR/NSPEEK membranes with various contents of NSPEEK and a degree of nitration of 23 – 25 mW cm–2 for S63N17 and 24 – 29 mW cm–2 for S63N38. Both the power density and open circuit voltage are higher than those of NafionR 115 and recast NafionR.
參考文獻
[1] 李振彬,直接甲醇燃料電池中陽極觸媒層效能之改良,國立成功 大學化學工程學系碩士論文,九十四年六月。
[2] 紀景發,以混合碳材為PtRu/C觸媒擔體用於改良直接甲醇燃料電池中陽極觸媒層之效能,國立成功大學化學工程學系碩士論文,九十五年六月。
[3] http://unfccc.int/2860.php
[4] 楊志忠,林頌恩,韋文誠,燃料電池的發展現況,科學發展,30,2003年7月。
[5] 陳慕辰,直接甲醇燃料電池陰陽兩極之阻抗分析,國立成功大學化學工程學系碩士論文,九十三年九月。
[6] 鎮江,燃料電池,全華科技圖書股份有限公司,九十二年十一月。
[7] 旗威科技有限公司,勝光科技科技股份有限公司,新能源時代的DMFC直接甲醇燃料電池原理、應用與實作,九十五年十一月。
[8] 盧敏彥,黃俊傑,微型燃料電池-直接甲醇燃料電池,化工技術,九十一年六月。
[9] 梁育豪,鋰離子於聚丙烯共聚物膠態高分子電解質之傳導行為探討,國立成功大學化學工程學系博士論文,九十六年十二月。
[10] D.E. Fenton, J.M. Parker, P.V. Wright, Polymer, 14 (1973) 589.
[11] P.V. Wright, British Polym. J., 7 (1975) 319–327.
[12] M.B. Armand, J.M. Chabagno, M. Duclot, Second International meeting Solid Electrolyte Eextend Abstracts, St. Andrews Ecose., 1978, pp.20–22.
[13] M.B. Armand, J.M. Chabagno, J.M.D. Duclot, Fast Ion Transport in Solids, P.M. Vashishta, J.N. Mundy, G.K. Shenoy, North Holland, Amsterdam, 1979, pp.131.
[14] T. Miyamoto, K. Shibayama, J. Appl. Phys., 44 (1973) 5372–5376.
[15] P.G. Bruce, Solid State Electrochemistry, Cambridge University Press, 1995.
[16] 楊智仲,直接甲醇燃料電池用質子交換膜的製備:聚乙烯醇的磺酸化與導電度研究,義守大學生物技術與化學工程研究所碩士論文,九十四年七月。
[17] 吳漢朗,燃料電池質子交換膜用磺酸化聚醚醚酮之製備與性質研究,國立清華大學化學工程學系博士論文,九十五年十月。
[18] N.W. Deluca, Y.A. Elabd, J. Polym. Sci. Part B: Polym. Phys., 44 (2006) 2201–2225.
[19] M.G. Fiona, Polymer Electrolytes, RSC Materials Monographs, UK, 1997.
[20] Y. Hu, Z. Wang, H. Li, X. Huang, L. Chen, J. Electrochem. Soc., 151 (2004) A1424–A1428.
[21] 吳千舜,新穎質子交換膜,國立中央大學化學研究所碩士論文,九十三年六月。
[22] B. Smitha, S. Sridhar, A.A. Khan, J. Membr. Sci., 259 (2005) 10–26.
[23] X. Ren, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc., 147 (2000) 92–98.
[24] S.J. Paddison, D.W. Reagor, T.A. Zawodzinski Jr., J. Electroanal. Chem., 459 (1998) 91–97.
[25] S.J. Paddison, G. Bender, K.D. Kreuer, N. Nicoloso, T.A. Jr. Zawodzinski, J. New Mat. Electrochem. Systems, 3 (2000) 291–300.
[26] N.N. Sia; J.Y. Li, J. Applied Physics, 87 (2000) 3321–3331.
[27] A.V. Anantaraman, C.L. Gardner, Journal of Electroanal. Chem., 414 (1996) 115–120.
[28] M. Cappadonia, E.J. Wilhelm, N. Saberi, M. Seyedeh, U. Stimming, Solid State Ionics, 77 (1995) 65–69.
[29] R.S. Chen, J.P. Jayakody, S.G. Greenbaum, Y.S. Pak, G. Xu, M.G. McLin, J. Electrochem. Soc., 140 (1993) 889–95.
[30] C.A. Edmondson, P.E. Stallworth, M.C. Wintersgill, J.J. Fontanella, Y. Dai, S.G. Greenbaum, Electrochim. Acta, 43 (1998) 1295–1299.
[31] G. Meresi, Y. Wang, A. Bandis, P.T. Inglefield, A.A. Jones, W.Y. Wen, Polymer, 42 (2001) 6153–6160.
[32] M. Laporta, M. Pegoraro, L. Zanderighi, Macromol. Mater. Eng., 282 (2000) 22–29.
[33] G. Gebel, Polymer, 41 (2000) 5829–5838.
[34] J.A. Elliott, S. Hanna, A.M.S. Elliott, G.E. Cooley, Macromolecules, 33 (2000) 4161–4171.
[35] R.S. McLean, M. Doyle, B.B. Sauer, Macromolecules, 33 (2000) 4161–4171.
[36] L.J. Hobson, Y. Nakano, H. Ozu, S. Hayase, J. of Power Sources, 104 (2002) 79–84.
[37] Z.G. Shao, X. Wang, I.M. Hsing, J. Membr. Sci., 210 (2002) 147–153.
[38] G.G. Scherer, Phys. Chem., 94 (1990) 1008.
[39] B. Gupta, F.N. Buchi, G.G. Scherer, A. Chapiro, Solid State Ionics, 61 (1993) 213–218.
[40] J. Wei, C. Stone, A.E. Steck, Ballard Power System, WO95/08581.
[41] J. Wei, C. Stone, A.E. Steck, J. Membr. Sci., 4771 (2000) 1.
[42] S. Hietala, S.L. Maunu, F. Sundholm, J. Polym. Sci. Part B: Polym. Phys., 38 (2000) 3277–3284.
[43] M. Ise, Polymer Elektrolyt Membranen: Untersuchungen zur Mikrostruktur und zu den Transporteigenschaften fur Protonen und Wasser, Ph.D. Thesis, University of Stuttgart, 2000.
[44] X. Jin, M.T. Bishop, T.S. Ellis, F.E. Karasz, Birtich Polym. J., 17 (1985) 4–10.
[45] N. Shibuya, R.S. Porter, Macromolecules, 25 (1992) 6495–6499.
[46] R.Y.M. Huang, P. Shao, C.M. Burns, X. Feng, J. Appl. Polym. Sci., 82 (2001) 2651–2660.
[47] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci., 229 (2004) 95–106.
[48] Y. Luo, R. Huo, X. Jin, F.E. Karasz, J. Anal. Appl. Pyroylsis, 34 (1995) 229–242.
[49] C. Bailly, D.J. Williams, F.E. Karasz, W.J. MacKnight, Polymer 28 (1987) 1009–1016.
[50] R. Jiang, H.R. Kunz, J.M. Fenton, J. Power Sources, 150 (2005) 120–128.
[51] K.D. Kreuer, J. Membr. Sci., 185 (2001) 29–39.
[52] K.D. Kreuer, Solid State Ionics, 97 (1997) 1–15.
[53] R.J. Karcha, R.S. Porter, J. Polym. Sci.: Part B: Polym. Phys., 27 (1989) 2153–2155.
[54] R.J. Karcha, R.S. Porter, J. Polym. Sci.: Part B: Polym. Phys., 31 (1993) 821–830.
[55] L. Leung, D.J. Williams, F.E. Karasz, W.J. MacKnight, Polymer Bulletin, 16 (1986) 457–464.
[56] N.S. Schneider, W.J. Macknight, N.H. Sung, Polymeric Materials Science and Engineering, 58 (1988) 957–61.
[57] O. Olabisi, L.M. Robeson, M.T. Shaw, Polymer-polymer Miscibility, Academic Press, New York, 1979.
[58] W. Cui, J. Kerres, G. Eigenberger, Sep. Purif. Technol., 14 (1998) 145–154.
[59] S.D. Mikhailenko, S.M.J. Zaidi, S. Kaliaguine, J. Polym. Sci.: Part B: Polym. Phys., 38 (2000) 1386–1395.
[60] F.G. Wilhelm, I.G.M. Punt, N.F.A. vandervegt, H. Strathmann, M. Wessling, J. Membr. Sci., 199 (2002) 167–176.
[61] C. Manea, M. Mulder, J. Membr. Sci., 206 (2002) 443–453.
[62] S. Swier, M.T. Shaw, R.A. Weiss, J. Membr. Sci., 270 (2006) 22–31.
[63] X. Li, D. Chen, D. Xu, C. Zhao, Z. Wang, H. Lu, H. Na, J. Membr. Sci., 275 (2006) 134–140.
[64] R. Jiang, H.R. Kunz, J.M. Fenton, J. Electrochem. Soc., 153 (2006) A1554–A1561.
[65] F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodinski, J.E. McGrath, J. Membr. Sci., 197 (2001) 359.
[66] M. Kawahara, M. Rikukawa, K. Sanui, N. Ogata, Solid State Ionics, 136 (2000) 1193.
[67] M. Kawahara, M. Rikukawa, K. Sanui, Polym. Adv. Technol., 11 (2000) 544.
[68] J.A. Asensio, S. Borros, R. Gomez, J. Polym. Sci. Part A: Polym. Chem., 40 (2002) 3703.
[69] C. Genies, R. Mercier, B. Sillinon, N. Cornet, G. Gebel, M. Pineri, Polymer, 42 (2001) 359.
[70] E. Valejo, C. Gavach, M. Pineri, J.Power Sources, 160 (1999) 127.
[71] X. Guo, J. Fang; T. Watari, K. Tanaka, H. Kita, Okamota, Macromolecules, 35 (2002) 6707.
[72] M. Rikukawa, K. Sanui, Prog. Polym. Sci., 25 (2000) 1463.
[73] J.M. Bae, I. Honma, M. Murate, T. Yamamoto, M. Rikukawa, N. Ogata, Solid State Ionics, 147 (2002) 189.
[74] A.D. Child, J.R. Reynold, Macromolecules, 27 (1994) 1975.
[75] R. Rulkens, M. Schulze, Macromol. Rapid Commun., 15 (1994) 669.
[76] K. Miyatake, H. Iyotani, K. Yamamoto, E. Tscuchida, Macromolecules, 29 (1996) 6969.
[77] P. Hruszka, J. Jurga, B. Brychi, Polymer, 33 (1992) 248.
[78] B. Kosmala, J. Schauer, J. Appl. Polym. Sci., 85 (2002) 1118.
[79] K. Miyatake, E. Shouji, K. Yamamoto, E. Tsuchida, Macromolecules, 30 (1997) 2941.
[80] R.W. Kopitzke, C.A. Linkous, G.L. Nelson, J. polym. Sci., 36 (1998) 1197.
[81] Q. Guo, P.N. Pintauro, H. Tang, S. O’Connor, J. Polym. Sci., 154 (1999) 175.
[82] I. Honma, H. Nakajima, O. Nishikawa, T. Sugimoto, S. Nomura, Solid State Ionics, 162–163 (2003) 237–245.
[83] D.R. Vernon, F. Meng, S.F. Dec, D.L. Williamson, J.A. Turner, A.M. Herring, J. Power Sources, 139 (2005) 141–151.
[84] R.K. Nagarale, G.S. Gohil, V.K. Shahi, J. Membr. Sci., 280 (2006) 389–396.
[85] S.M.J. Zaidi, S.D. Mikhailenko, G.P. Robertson, M.D. Guiver, S. Kaliaguine, J. Membr. Sci., 173 (2000) 17–34.
[86] A. Carbone, R. Pedicini, G. Portale, A. Longo, L. D’Ilario, E. Passalacqua, J. Power Sources, 163 (2006) 18–26.
[87] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Macromolecules, 37 (2004) 7960–7967.
[88] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, J. Polym. Sci. Part A: Polym. Chem., 42 (2004) 2866–2876.
[89] K. Miyatake, Y. Chikashige, M. Watanabe, Macromolecules, 36 (2003) 9691–9693.
[90] H.S. Lee, A.S. Badami, A. Roy, J.E. McGrath, J. Polym. Sci. Part A: Polym. Chem., 45 (2007) 4879–4890.
[91] J.C. Tsai, J.F. Kuo, C.Y. Chen, J. Power Sources, 174 (2007) 103–113.
[92] J. Jouanneau, R. Mercier, L. Gomom, G. Gebel, Macromolecules, 40 (2007) 983–990.
[93] D.J. Jones, J.J. Roziere, J. Membr. Sci., 185 (2001) 41–58.
[94] W. Essafi, G. Gebel, R. Mercier, Macromolecules, 37 (2004) 1431–1440.
[95] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, J. Am. Chem. Soc., 128 (2006) 1762–1769.
[96] J.V. Crivello, J. Org. Chem., 46, (1981) 3056–3060.
[97] W.H. Daly, S. Lee, C. Rungaroonthaikul, In Chemical Reactions in Polymers, J.F. Kinstle, J.L. Benham, Ed., ACS Symposium Series 364, ACS: Washington, DC, 1988, pp. 4–23.
[98] H.A. Naik, I.W. Parsons, P.T. McGrail, P.D. Mackenzie, Polymer, 32 (1991) 140–145.
[99] R.J. Karcha, R.S. Porter, J. Macromol. Sci. Part A- Pure Appl. Chem., A32 (1995) 957–967.
[100] W.K. Son, H.Y. Song, S.H. Kim, H.J Kim, W.G. Kim, J. Polym. Sci. Part A: Polym. Chem., 40 (2002) 4281–4287.
[101] Z.H. Huang, J.H. Dong, K.Y. Qiu, Y. Wei, J. Appl. Polym. Sci., 66 (1997) 853–860.
[102] F. Trotta, E. Drioli, A. Gordano, J. Appl. Polym. Sci., 80 (2001) 1037–1045.
[103] S. Xue, G. Yin, Euro. Polym. J., 42 (2006) 776–785.
[104] P. Xing, , G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci., 229 (2004) 95–106.
[105] V.V. Lakshmi, V. Choudhary, I. K. Varma, Macromol. Symp., 210 (2004) 21–29.
[106] A. Botvay, A. Mathe, L. Poppl, Polymer, 40 (1999) 4965–4970.
[107] A. Gordano, G. Clarizia, A. Torchia, F. Trotta, E. Drioli, Desalination, 145 (2002) 47–52.
[108] S. Zhong, C. Liu, Z. Dou, X. Li, C. Zhao, T. Fu, H. Na, J. Membr. Sci., 285 (2006) 404–411.
[109] X. Li, C. Zhao, H. Lu, Z. Wang, H. Na, Polymer, 46 (2005) 5820–5827.
[110] C. Zhao, Z Wang, D. Bi, H. Lin, K. Shao, T. Fu, S. Zhong, H. Na, Polymer, 48 (2007) 3090–3097.
[111] L. Li, J. Zhang, Y. Wang, J. Membr. Sci., 226 (2003) 159–167.
[112] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, S. Kaliaguine, Macromolecules, 37 (2004) 7960–7967.
[113] N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cormer, L. Dong, J.E. McGrath, J. Power Sources, 172 (2007) 20–29.
[114] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe, J. Am. Chem. Soc., 128 (2006) 1762–1769.
[115] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, J. Power Sources, 106 (2002) 173–177.
[116] V. Baglio, A. Di Blasi, A.S. Arico, V. Antonucci, P.L. Antonucci, F.S. Fiory, S. Licoccia, E. Traversa, J. New Mater. Electrochem. Syst., 7 (2004) 275–280.
[117] V. Tricoli, F. Nannetti, Electrochim. Act., 48 (2003) 2625–2633.
[118] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, J.S. Kim, J. Power Sources, 118 (2003) 205–211.
[119] F.A. Landis, R.B. Moore, Macromolecules, 33 (2000) 6031–6041.
[120] N.W. DeLuca, Y.A. Elabd, J. Power Sources, 163 (2006) 386–391.
[121] B. Bae, H.Y. Ha, D. Kim, J. Electrochem. Soc., 152 (2005) A1366–A1372.
[122] H.S. Park, Y.J. Kim, W.H. Hong, Y.S. Choi, H.K. Lee, Macromolecules, 38 (2005) 2289–2295.
[123] L. Gubler, D. Kramer, J. Belack, O. Unsal, T.J. Schmidt, G.G. Scherer, J. Electrochem. Soc., 154 (2007) B981–B1372.
[124] M.S. Kang, J.H. Kim, J. Won, S.H. Moon, Y.S. Kang, J. Membr. Sci., 247 (2005) 127–135.
[125] K.D. Kreuer, J. Membr. Sci., 185 (2001) 29–39.
[126] P. Xing, , G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, J. Membr. Sci., 229 (2004) 95–106.
[127] V.V. Lakshmi, V. Choudhary, I.K. Varma, Macromol. Symp., 210 (2004) 21–29.
[128] J. Hu, V. Baglio, V. Tricoli, A.S. Arico, V. Antonucci, J. Appl. Electrochem., 38 (2008) 543–550.
[129] K.Y. Cho, H.Y. Jung, K.A. Sung, W.K. Kim, S.J. Sung, J.K. Park, J.H. Choi, Y.E. Sung, J. Power Sources, 159 (2006) 524–528.
[130] C. Zaluski, G. Xu, Macromolecules, 27 (1994) 6750–6754.
[131] S. Tan, D. Belanger, J. Phys. Chem. B, 109 (2005) 23480–23490.
[132] Y.F. Lin, Y.H. Hsiao, C.Y. Yen, C.L. Chiang, C.H. Lee, C.C. Huang, C.C.M. Ma, J. Power Sources, 172 (2007) 570–577.
[133] S. Zhong, C. Liu, Z. Dou, X. Li, C. Zhao, T. Fu, H. Na, J. Membr. Sci., 285 (2006) 404–411.
[134] R.K. Nagarale, G.S. Gohil, V.K. Shahi, J. Membr. Sci., 280 (2006) 389–396.
[135] K.D. Kreuer, J. Membr. Sci., 185 (2001) 29–39.
[136] M.S. Kang, J.H. Kim, J. Won, S.H. Moon, Y.S. Kang, J. Membr. Sci., 247 (2005) 127–135.
[137] I.T. Kim, J. Choi, S.C. Kim, J. Membr. Sci., 300 (2007) 28–35.
[138] J. Choi, D.H. Kim, H.K. Kim, C. Shin, S.C. Kim, J. Membr. Sci., 310 (2008) 384–392.
[139] C.K. Lin, J.F. Kuo, C.Y. Chen, J. Power Sources, 187 (2009) 341–347.
[140] W.K. Son, H.Y. Song, S.H. Kim, H.J Kim, W.G. Kim, J. Polym. Sci. Part A: Polym. Chem., 40 (2002) 4281–4287.
[141] F. Trotta, E. Drioli, A. Gordano, J. Appl. Polym. Sci., 80 (2001) 1037–1045.
[142] J. Choi, I.T. Kim, S.C. Kim, Macromol. Res., 13 (2005) 514–520.
[143] Y.F. Lin, Y.H. Hsiao, C.Y. Yen, C.L. Chiang, C.H. Lee, C.C. Huang, C.C.M. Ma, J. Power Sources, 172 (2007) 570–577.
[144] A. Gordano, G. Clarizia, A. Torchia, F. Trotta, E. Drioli, Desalination, 145 (2002) 47–52.
[145] S. Zhong, C. Liu, Z. Dou, X. Li, C. Zhao, T. Fu, H. Na, J. Membr. Sci., 285 (2006) 404–411.