| 研究生: |
伍芳嫺 Wu, Fang-Hsien |
|---|---|
| 論文名稱: |
先進介觀型燃燒器之研發-分段式觸媒搭配空腔 Research and Development of an Advancced Meso-Scale Burner Using Innovative Catalyst Segmentation and Cavity |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 介觀型燃燒器 、分段式觸媒 、空腔 、數值模擬 |
| 外文關鍵詞: | Meso-sceal burner, Segmentation catalyst, Cavity, Numerical simulation |
| 相關次數: | 點閱:122 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要於介觀型燃燒器中,利用創意分段式觸媒搭配空腔的流道配置型態,以實驗與模擬的方式顯現觸媒反應與氣相反應共同存在的燃燒特性與機制。在固定觸媒總長度的前提之下,傳統單段式觸媒與分段式觸媒比較後可以發現,分段式觸媒可有效幫助此介觀型燃燒器中的流道於非觸媒段處順利引燃出氣相反應,達到觸媒反應與氣相反應互相輔助共同存在的特點;分段式觸媒相鄰的間隔處因周遭的觸媒反應產生的熱能及中間產物可有助於氣相反應的產生與維持,同時也由數值模擬可以看出,氫氣燃料在單段式觸媒中僅少部分的消耗,但於分段式觸煤的配置中因觸媒反應與氣相反應共存的環境下,可將大部份的燃料H2快速消耗掉,減少未燃氣體排出燃燒器的機會,而分段式觸媒中,又以2mm × 8的配置方式,其觸媒與氣相反應共存的範圍較廣些,但於高流速下火焰會很容易被吹出流道外,因此將分段式觸媒之間的間隔處改以空腔的配置方式,藉由空腔可有效提供一低速迴流區,提供流道中的火焰於高流速下一個穩駐機制,且有效擴展了觸媒與氣相反應共存的操作區間。
This research mainly addresses the combustion characteristics and mechanism of multi-segment catalyst and cavity in a meso-scale burner by means of experiments and numerical simulation with detailed hetero- and homogeneous reaction. Compared with traditional single catalyst and multi-segment catalyst with the same total catalyst length, it found that multi-segment catalyst can induce the gas reaction anchoring in non-catalyst walls in a meso-scale burner, and yield the coexistence of surface reaction and gas reaction in the channel instead of competition between hetero- and homogeneous reaction. In the proposed catalyst configuration, the surface (heterogeneous) reaction in a prior catalyst segment produces chemical radicals and catalytically induced exothermicity, and the gas (homogeneous) reaction is subsequently induced and anchored in the following non-catalyst wall/or cavity. In a meantime, numerical simulation indicates that hydrogen has rare fuel consumption in a single catalyst burner, but has rush fuel consumption in a multi-segment catalyst via cooperating between hetero- and homogeneous reaction. Among multi-segment catalyst layouts, the catalyst layout with 2mm×8 sections has an extensive operation of hetero- and homogeneous coexistence. Nevertheless, flames are prone to be blow out in high flow velocity conditions, so that the inert walls between adjacent segment catalysts are further replaced with cavities implement. The cavities can effectively provide a low-velocity recirculation zone to stabilize flames in relatively high flow rates and successfully extend the operational range of hetero- and homogeneous coexistence.
[1] Sitzki, L., Bower, K., Schuster, E., Ronney, P.D., Wussow, S., 2001, “Combustion in microscale heat-recirculating burners,” The Third Asia-Pacific Conference on Combustion. Seoul, Korea.
[2] Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, F.L., Aksay, A., and Yetter, R.A., 2002, “Development of a micro reactor as a thermal source for MEMS power generation” Proc. Combust. Inst., 29, pp. 909-16.
[3] 許家睿, 2003, “拉曼散射量測與數值模擬應用於觸媒微管燃燒之研究,” 國立成功大學航空太空學系碩士論文.
[4] Fernandez-Pello, A.C., 2003, “Micropower generation using combustion: issues and approaches”, Proc. Combust. Inst. 29, pp. 883-889.
[5] Miesse, C.M., Masel, R.I., Jensen, C.D., Shannon, M.A., 2004, “Submillimeter-scale combustion,” AIChE Journal, Vol. 10, No. 12, pp.3206-3214.
[6] 許紘緯, 1998, “觸媒穩駐燃燒之初步研究,” 國立成功大學航空太空學系碩士論文.
[7] Deutschmann, O., Behrendt, F., 1994, “Modelling and simulation of heterogeneous oxidation of methane on a platinum foil,” Catal. Today, Vol. 21, pp. 461-470.
[8] Deutschmann, O., Schmidt, R., Behrendt, F., Warnatz, J., 1996, “Numerical modeling of catalytic ignition,” Proc. Combust. Inst., Vol. 26, pp. 1747–1754.
[9] Hickman, D.A., Schmidt, L.D., 1993, “Steps in CH4 oxidation on Pt and Rh surfaces: High‐temperature reactor simulations,” AIChE, Vol. 39, No. 7, pp. 1164-1177.
[10] Hellsing, B., Kasemo, B., Zhdanov, V. P., 1991, “Kinetics of the hydrogen-oxygen reaction on platinum,” J. Catal., Vol. 132, pp. 210-228.
[11] Fridell, E., Rosen, A., 1994, “A Laser-Induced Fluorescence Study of OH Desorption from Pt in H2O/O2 and H2O/H2 Mixtures,” Langmuir, Vol. 10, pp. 699-708.
[12] Rinnemo, M., Kulginov, D., Johansson, S., Wong, K.L., Zhdanov, V.P., Kasemo, B., 1997, “Catalytic ignition in the CO---O2 reaction on platinum: experiment and simulations,” Surface Science, Vol. 376. pp. 297-309.
[13] Aghalayam, P., Park, Y.K., Vlachos, D.G., 2000, “A dtailed surface reaction mechanism for CO oxidation on Pt,” Pro. Combust. Inst., Vol. 28, pp. 1331–1339.
[14] Dogwiler, U., Benz, P., Mantzaras, J., 1999, “Two-Dimensional Modeling for Catalytically Stabilized Combustion of a Lean Methane-Air Mixture With Elementary Homogeneous and Heterogeneous Chemical Reactions,” Combust. Flame, Vol. 116, pp. 243–258.
[15] Dogwiler, U., Benz, P., Mantzaras, J., Kaeppeli, B., Bombach, R., Arnold, A., 1998, “Homogeneous ignition of methane-air mixtures over Platinum: comparison of measurements and detailed numerical predictions,” Proc. Combust. Inst. Vol.27, pp. 2275–2282.
[16] Deutschmann, O., Schmidt, L.D. 1998, “Modeling the partial oxidation of methane in a short-contact-time reactor,” AIChE J., Vol. 44, Issue 11, pp. 2465–2477.
[17] Pfefferle, W.C., Pfefferle, L.D., 1986, “Catalytically stabilized combustion,” Pro. Eng. Combust. Sci., Vol. 12, pp. 25-41.
[18] Vlachos, D.G., Bui, P.A., 1996. “Catalytic ignition and extinction of hydrogen: comparison of simulations and experiments,” Surface Sci., Vol. 364. pp. 625-630.
[19] Masao, T., Junjo, K., 1997, “Experimental analysis of C3H8 catalyst combustion in a honeycomb monolith Pt catalyst,” The First Asia-Pacific Conference on combustion, pp. 555-558.
[20] Fassihi, M., Zhdanov, V.P., Rinnemo, M., Keck, K.E., Kasemo, B., 1993, “A theoretical and experimental study of catalytic ignition in the hydrogen-oxygen reaction on platinum,” J. Catal., Vol. 141, No. 438.
[21] Rinnemo, M., Fassihi, M., Kasemo, B., 1993, “The critical condition for catalytic ignition H2/O2 on Pt,” Chem. Phys. Lett., Vol. 211, No. 60-64.
[22] Fernandes, N., Park, Y.K., Vlachos, D.G., 1999, “The autothermal behavior of platinum catalyzed hydrogen oxidation: experiments and modeling,” Combust. Flame, Vol. 118, pp. 164-178. [23] Norton, D.G., Vlachos, D.G., Westmoreland, P.R., 2005, “Hydrogen assisted self-ignition of propane-air mixtures in catalytic microburners,” Proc. Combust. Inst., Vol. 30, Issue 2, 2005, pp. 2473-2480.
[24] Veser, G., 2001, “Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor,” Chem. Eng. Sci. Vol.56, Issue 4, pp. 1265-1273.
[25] Deutschmann, O., Maier, L.I., Riedel, U., 1999, “Hydrogen Assisted Catalytic Combustion of Methane on Platinum,” 4th Inter. Workshop on Catalytic Combustion.
[26] Deutschmann, O., Maier, L.I., Riedel, U., Stroemman, A.H., Dibble, R.W., 2000, “Hydrogen assisted catalytic combustion of methane on platinum,” Catal. Today, Vol. 59, pp. 141-150.
[27] Davis, M.B., Pawson, M.D., Schmidt, L.D., 2000, “Methane oxidation over noble metal gauzes: an LIF study,” Combust. Flame, Vol.123, pp.159-174.
[28] Maruta, K., Takeda, K., Ahn, J., Borer, K., Sitzki, L., Ronney, P.D., Deutschmann, O., 2002, “Extinction limits of catalytic combustion in microchannels,” Proc. Combust. Inst., Vol. 29, pp. 957-963.
[29] Dagaut, P., Nicolle, A., 2005, “Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas bled oxidation over extended temperature and equivalence ratio ranges,” Proc. Combust. Inst., Vol. 30, pp. 2631-2638.
[30] Scarpa, A., Pirone, R., Russo, G., Vlachos, D.G., 2009, “Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor,” Combust. Flame, Vol. 156, pp. 947-953.
[31] Kaisare, N.S., Vlachos, D.G., 2007, “Extending the region of stable homogeneous micro-combustion through forced unsteady operation.” Proc. Combust. Inst. Vol. 31, pp. 3293-3300.
[32] Federici, J.A., Vlachos, D.G., 2008, “A computational fluid dynamics study of propane/air microflame stability in a heat recirculation reactor,” Combust. Flame, Vol.153, pp. 258-269.
[33] Federici, J.A., Wetzel, E.D., Geil, B.R., Vlachos, D.G., 2009, “Single channel and heat recirculation catalytic microburners: An experimental and computational fluid dynamics study,” Proc. Combust. Inst. Vol. 32, pp. 3011-3018.
[34] Eckbreth, A.C., 1988, Laser Diagnostics for Combustion Temperature and Species, Abacus Press.
[35] Linan, A.C., Williams, F.A., 1993, Fundamental Aspects of Combustion, Oxford University Press.
[36] Norton, D.G., Vlachos, D.G. 2004, “A CFD study for propane/air microflame stability,” Combust. Flame, Vol. 138, pp. 97-107.
[37] Choi, K.H., Na, H.B., Lee, D.H., Kwon, S., 2004, “Numerical simulation of flame propagation near extinction conduction in a micro-combustor,” Microscale Thermophysical Engineering, Vol. 8, pp. 71-89.
[38] Aghalayam, P., Vlachos, D.G., 1998, “The roles of thermal and chemical quenching in NOx and fuel emissions: Combustion of surface-stabilized hydrogen/air mixture,” AIChE J. Vol. 44, pp. 2025-2034.
[39] Vlachos, D.G., 1996, “Homogeneous-heterogeneous oxidation reactions over platinum and inert surface,” Chem. Eng. Sci., Vol. 51, pp. 2429-2438.
[40] Raimondeau, S., Vlachos, D.G., Masel, R.I., 2002, “Modeling of high-temperature microburners,” Proc. Combust. Inst., Vol. 29, pp.901-907.
[41] Appel, C., Mantzaras, J., Schaeren, R., Bombach, R., Inauen, A., Kaeppeli, B., Hemmerling, B., 2002, “An Experimental and Numerical Investigation of Homogeneous Ignition in Catalytically Stabilized Combustion of Hydrogen/Air Mixtures Over Platinum,” Combust. Flame, Vol. 128, pp. 340-368.
[42] Norton, D.G., Vlachos., 2003, “Combustion characteristics and flame stability at the microscale: a CFD study of premixed methane/air mixtures,” Chem. Eng. Sci. Vol. 53, pp. 4871-4882.
[43] Hua, J., Wu, M., Kumar, K., 2005, “Numerical simulation of the hydrogen-air mixture in micro-scaled chambers. Part I: Fundamental study,” Chem. Eng. Sci., Vol. 60, pp. 3498-3506.
[44] Chen, G.B., Chao, Y.C., Chen, C.P., 2008, “Enhancement of hydrogen reaction in a micro-channel by catalyst segmentation,” J. Hydrogen Energy., Vol. 33, pp. 2586-2595.
[45] Shahamiri, S.A., Wierzba, I., 2009, “Simulation of catalytic oxidation of lean hydrogen-methane mixtures,’ J. Hydrogen Energy, Vol. 34, pp. 5785-5794.
[46] Li, Y.H., Chen, G.B., Hsu, H.W., Chao, Y.C., 2010, “Enhancement of methane combustion in microchannels: Effects of catalyst segmentation and cavities,” Chem. Eng. J., Vol. 160, pp. 715-722.
[47] Miesse, C.M., Masel, R.I., Jensen, C.D., Shannon, M.A., Short, M., 2004, “Submillimeter-scale combustion,” AIChE J. Vol. 50 pp. 3206-3214.
[48] Ganley, J.C., Seebauer, E.G., Masel, R.I., 2003, “Porous anodic alumina posts as a catalyst support in microreactors for production of hydrogen from ammonia,” AIChE J. Vol. 23, pp.519-539.
[49] Ahn, J., Eastwood, C., Sitzki, L., Borer, K., Ronney, P.D. 2003, “Catalytic and noncatalytic combustion in heat-recirculating burners,” Proceeding of the Third Joint Meeting of the US Sections of the Combustion Institute
[50] Ronney, P.D., 2003, “Analysis of non-adiabatic heat-recirculating combustors,” Combust. Flame, Vol. 135, No. 4, pp. 421-439.
[51] Vican, J., Gajdeczko, B.F., Dryer, F.L., Milius, D.L., Aksay, I.A., 2002, “Development of a microreactor as a thermal source for MEMS power generation,” Proc. Combust. Inst., Vol.29.
[52] Carroni, R., Schmidt, V., Griffin, T., 2002, “Catalytic combustion for power generation,” Catal, Today, Vol. 75, pp. 287-295.
[53] Weinberg, F.J., Rowe, D.W., Min, G., Ronny, P., 2002, “On thermoelectric power conversion from heat recirculation combustion system,” Proc. Combust. Inst., Vol.29.
[54] Schneider, S.J., Boyarko, G.A., Sung, C.J., 2003, “Catalyzed ignition of bipropellants in microtubes,” the 41st AIAA Aerospace Science Meeting.
[55] CFD-ACE, CFDRC, Huntsville, AL, 2003.
[56] Miller, J.A., Bowman, C.T., 1989, “Mechanism and modeling of nitrogen chemistry in combustion,” Pro. Combust. Sci. Vol.15, pp. 287-338.
[57] Karagiannidis, S., Mantzaras, J., Jackson, G., Boulouchos, K., 2007, “Hetero-/homogeneous combustion and stability maps in methane-fueled catalytic microreactors,” Proc. Combust. Inst., Vol. 31, pp. 3309-3317.
[58] Kee, R.J., Rupley, F.M., Meeks, E., Miller, J.A., 1996, “Chemkin-III: A Fortran chemical kinetics package for the analysis of gas phase chemical and plasma kinetics,” Sandia National Laboratories Report SAND96-8216.
[59] Coltrin, M.E., Kee, R.J., Rupley, F.M., Meeks, E., 1996, “Surface-Chemkin-III: A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface-gas-phase interface,” Sandia National Laboratories Report SAND96-8217.
[60] Pfefferle, W.C., 1977, “Method of starting a combustion system utilizing a catalyst,” United States Patent No. 4019316.