| 研究生: |
張瑗錞 Chang, Yuan-Chun |
|---|---|
| 論文名稱: |
籠目結構 FeGe 中的異常霍爾效應 Anomalous Hall effect on a kagome lattice FeGe |
| 指導教授: |
黃建龍
Huang, Chien-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 異常霍爾效應 、磁性材料 、非公度磁序 |
| 外文關鍵詞: | anomalous Hall effect, magnetic materials, incommensurate magnetic order |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
籠目結構 FeGe 因為其角共享三角形結構而展現出多種特性。在較早的研究中表明了 FeGe 為一種反鐵磁性樣品,其在低溫處表現出電荷密度波以及自旋傾斜,且量測到了異常霍爾效應,並且研究表示電荷密度波與異常霍爾效應的產生相關,而另一研究指出了對樣品進行退火可以對電荷密度波的存在與否產生影響。對此,本研究透過對不同退火溫度的樣品進行霍爾電阻率、磁阻以及磁性實驗來分析電荷密度波與異常霍爾效應之間的關係。經過退火的樣品分別為:以 320°C 退火、具有長程電荷密度波的樣品,以及以 560°C 退火、不具有電荷密度波的樣品,且中子散射測量顯示,這兩個樣品在不同的溫度下皆會出現自旋傾斜現象。實驗中發現兩個樣品皆存在異常霍爾效應,此結果顯示了異常霍爾效應並非源自於電荷密度波,而是來自於自旋傾斜,亦即拓撲霍爾效應所致。
A kagome lattice FeGe exhibits a variety of physical properties due to its corner-sharing triangular structure. Previous study has shown that FeGe is an antiferro-magnetic material that exhibits charge density wave (CDW) order and spin canting at low temperatures, along with a measurable anomalous Hall effect (AHE). The study has suggested that CDW order is associated with the emergence of the AHE. Another study reported that thermal annealing can influence the presence or absence of the CDW order. In this work, we investigate the relationship between CDW and AHE by performing Hall resistivity, magnetoresistance, and magnetization measurements on FeGe samples annealed at different temperatures. The samples include a 320°C annealed sample with long-range CDW order, and a 560°C annealed sample without CDW. In both samples, the spin canting occurred below different temperatures are observed in neutron scattering measurements. Notably, the AHE is observed in both cases. These results indicate that the AHE does not originate from CDW order, but rather from spin canting, i.e., the topological Hall effect (THE).
[1] S. Blundell. Magnetism in Condensed Matter. Oxford Master Series in Condensed Matter Physics. OUP Oxford, 2001.
[2] Xiaokun Teng, Lebing Chen, Feng Ye, Elliott Rosenberg, Zhaoyu Liu, Jia-Xin Yin, Yu-Xiao Jiang, Ji Seop Oh, M. Zahid Hasan, Kelly J. Neubauer, Bin Gao, Yaofeng Xie, Makoto Hashimoto, Donghui Lu, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Robert J. Birgeneau, Jiun-Haw Chu, Ming Yi, and Pengcheng Dai. Discovery of charge density wave in a kagome lattice antiferromagnet. Nature, 609(7927):490–495, Sep 2022.
[3] Philippe Mendels and Fabrice Bert. Quantum kagome frustrated antiferromagnets: One route to quantum spin liquids. Comptes Rendus Physique, 17(3):455–470, 2016. Physique de la matière condensée au XXIe siècle: l’héritage de Jacques Friedel.
[4] Philippe Mendels and Fabrice Bert. Quantum Kagome Antiferromagnet ZnCu3(OH)6Cl2. Journal of the Physical Society of Japan, 79(1):011001, Jan 2010.
[5] Jun-Won Rhim and Bohm-Jung Yang. Singular flat bands. Advances in Physics: X, 6(1):1901606, 2021.
[6] Hao Huang, Lixuan Zheng, Zhiyong Lin, Xu Guo, Sheng Wang, Shuai Zhang, Chi Zhang, Zhe Sun, Zhengfei Wang, Hongming Weng, Lin Li, Tao Wu, Xianhui Chen, and Changgan Zeng. Flat-Band-Induced Anomalous Anisotropic Charge Transport and Orbital Magnetism in Kagome Metal CoSn. Phys. Rev. Lett., 128:096601, Feb 2022.
[7] Zhi Li, Jincheng Zhuang, Li Wang, Haifeng Feng, Qian Gao, Xun Xu, Weichang Hao,Xiaolin Wang, Chao Zhang, Kehui Wu, Shi Xue Dou, Lan Chen, Zhenpeng Hu, and Yi Du. Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Science Advances, 4(11):eaau4511, 2018.
[8] Xiaokun Teng, Ji Seop Oh, Hengxin Tan, Lebing Chen, Jianwei Huang, Bin Gao, J. X. Yin, Jiun Haw Chu, Makoto Hashimoto, Donghui Lu, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Garrett E. Granroth, Binghai Yan, Robert J. Birgeneau, Pengcheng Dai, and Ming Yi. Magnetism and charge density wave order in kagome FeGe. Nature Physics, pages 1–9, 2022.
[9] Mingu Kang, Shiang Fang, Linda Ye, Hoi Chun Po, Jonathan Denlinger, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Efthimios Kaxiras, Joseph G Checkelsky, et al. Topological flat bands in frustrated kagome lattice CoSn. Nature communications, 11(1):4004, 2020.
[10] Wang Qing and Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica-Chinese Edition-, 64, May 2015.
[11] Yizhou Liu and Jiadong Zang. Overview and outlook of magnetic skyrmions. Wuli Xuebao/Acta Physica Sinica, 67, Jul 2018.
[12] Matthias Bode, Marcus Heide, Kirsten von Bergmann, Paolo Ferriani, Stefan Heinze, Gustav Bihlmayer, André Kubetzka, Oswald Pietzsch, Stefan Blügel, and Roland Wiesendanger. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature, 447:190–193, 2007.
[13] RobertE.CamleyandKarenL.Livesey. ConsequencesoftheDzyaloshinskii-Moriya interaction. Surface Science Reports, 78(3):100605, 2023.
[14] P. Bruno, V. K. Dugaev, and M. Taillefumier. Topological Hall Effect and Berry Phase in Magnetic Nanostructures. Phys. Rev. Lett., 93:096806, Aug 2004.
[15] István Kézsmárki, István Kézsmárki, Sándor Bordács, Peter Milde, Erik Neuber, Lukas M. Eng, Jonathan S. White, Henrik Moodysson Rønnow, Charles Dewhurst, Masahito Mochizuki, Masahito Mochizuki, Kosuke Yanai, Hiroyuki Nakamura, D Ehlers, V. Tsurkan, V. Tsurkan,and Alois Loidl. Néel-typeskyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. Nature materials, 14 11:1116–22, 2015.
[16] G. Grüner. The dynamics of charge-density waves. Rev. Mod. Phys., 60:1129–1181, Oct 1988.
[17] Chih-Chien Cheng. Study of charge-density waves in the layered material TiSe2. Master’s thesis, Tamkang University, Jan 2014.
[18] Xuetao Zhu, Jiandong Guo, Jiandi Zhang, and E. W. Plummer. Misconceptions associated with the origin of charge density waves. Advances in Physics: X, 2(3):622640, 2017.
[19] Jin-Ze Fan, Zhan-Bo Fang, Chao-Jie Luo, and Hui Zhang. Charge density waves in low-dimensional material. Acta Physica Sinica, 71(12-20220052):127103–1, 2022.
[20] CharlesSayers. Chargedensity wave phenomena in trigonal transition metal dichalcogenides. PhD thesis, University of Bath, Feb 2020.
[21] Klaus von Klitzing, Tapash Chakraborty, Philip Kim, Vidya Madhavan, Xi Dai, James McIver, Yoshinori Tokura, Lucile Savary, Daria Smirnova, Ana Maria Rey, Claudia Felser, Johannes Gooth, and Xiaoliang Qi. 40 years of the quantum Hall effect. Nature Reviews Physics, 2(8):397–401, Aug 2020. Publisher Copyright: © 2020, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.
[22] Naoto Nagaosa, Jairo Sinova, Shigeki Onoda, A. H. MacDonald, and N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 82:1539–1592, May 2010.
[23] Hongming Weng, Rui Yu, Xiao Hu, Xi Dai, and Zhong Fang.Quantum anomalous Hall effect and related topological electronic states. Advances in Physics, 64(3):227–282, May 2015.
[24] Robert Karplus and J. M. Luttinger. Hall Effect in Ferromagnetics. Phys. Rev., 95:1154–1160, Sep 1954.
[25] M. V. Berry. Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London Series A, 392(1802):45–57, Mar 1984.
[26] T. Jungwirth, Qian Niu, and A. H. MacDonald. Anomalous Hall Effect in Ferromagnetic Semiconductors. Phys. Rev. Lett., 88:207208, May 2002.
[27] Masaru Onoda and Naoto Nagaosa. Topological Nature of Anomalous Hall Effect in Ferromagnets. Journal of the Physical Society of Japan, 71(1):19–22, Jan 2002.
[28] Zhong Fang, Naoto Nagaosa, Kei S. Takahashi, Atsushi Asamitsu, Roland Mathieu, Takeshi Ogasawara, Hiroyuki Yamada, Masashi Kawasaki, Yoshinori Tokura, and Kiyoyuki Terakura. The Anomalous Hall Effect and Magnetic Monopoles in Momentum Space. Science, 302(5642):92–95, Oct 2003.
[29] Yugui Yao, Leonard Kleinman, A. H. MacDonald, Jairo Sinova, T. Jungwirth, Ding-sheng Wang, Enge Wang, and Qian Niu. First Principles Calculation of Anomalous Hall Conductivity in Ferromagnetic bcc Fe. Phys. Rev. Lett., 92:037204, Jan 2004.
[30] J. Smit. The spontaneous hall effect in ferromagnetics I. Physica, 21(6):877–887, 1955.
[31] J. Smit. The spontaneous hall effect in ferromagnetics II. Physica, 24(1):39–51, 1958.
[32] V. Zayets. Anomalous Hall effect (AHE), 2020.
[33] Dimitrie Culcer. The Anomalous Hall Effect, page 587–601. Elsevier, 2024.
[34] L. Berger. Side-Jump Mechanism for the Hall Effect of Ferromagnets. Phys. Rev. B, 2:4559–4566, Dec 1970.
[35] Emerson M. Pugh. Hall Effect and the Magnetic Properties of Some Ferromagnetic Materials. Phys. Rev., 36:1503–1511, Nov 1930.
[36] E. M. Pugh and T. W. Lippert. Hall e.m.f. and Intensity of Magnetization. Phys. Rev., 42:709–713, Dec 1932.
[37] Frank Freimuth, Robert Bamler, Yuriy Mokrousov, and Achim Rosch. Phase-space Berry phases in chiral magnets: Dzyaloshinskii-Moriya interaction and the charge of skyrmions. Phys. Rev. B, 88:214409, Dec 2013.
[38] C. Franz, F. Freimuth, A. Bauer, R. Ritz, C. Schnarr, C. Duvinage, T. Adams, S. Blügel, A. Rosch, Y. Mokrousov, and C. Pfleiderer. Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn1−xFexSi. Phys. Rev. Lett., 112:186601, May2014.
[39] Zhe-Jun-Yu Jin, Zhao-Zhuo Zeng, Yun-Shan Cao, and Peng Yan. Magnon Hall effect. Acta Physica Sinica, 73(1-20231589):017501–1, 2024.
[40] Brenden R. Ortiz, Samuel M. L. Teicher, Yong Hu, Julia L. Zuo, Paul M. Sarte, Emily C. Schueller, A. M. Milinda Abeykoon, Matthew J. Krogstad, Stephan Rosenkranz, Raymond Osborn, Ram Seshadri, Leon Balents, Junfeng He, and Stephen D. Wilson. CsV3Sb5: AZ2 Topological Kagome Metal with a Superconducting Ground State. Phys. Rev. Lett., 125:247002, Dec 2020.
[41] Yuxiao Jiang, Jiaxin Yin, M. Denner, Nana Shumiya, Gang Xu, Z. Guguchia, Junyi He, Md Shafayat Hossain, Xiaoxiong Liu, Jacob Ruff, Linus Kautzsch, Songtian Zhang, Guoqing Chang, Ilya Belopolski, Qi Zhang, Tyler Cochran, Daniel Multer, Maksim Litskevich, and M. Zahid Hasan. Unconventional chiral charge order in kagome superconductor KV3Sb5. Nature Materials, 20:1–5, Oct 2021.
[42] Zuowei Liang, Xingyuan Hou, Fan Zhang, Wanru Ma, Ping Wu, Zongyuan Zhang, Fanghang Yu, J.-J. Ying, Kun Jiang, Lei Shan, Zhenyu Wang, and X.-H. Chen. Three-Dimensional Charge Density Wave and Surface-Dependent Vortex-Core States in a Kagome Superconductor CsV3Sb5. Phys. Rev. X, 11:031026, Aug 2021.
[43] He Zhao, Hong Li, Brenden R. Ortiz, Samuel M. L. Teicher, Takamori Park, Mengxing Ye, Ziqiang Wang, Leon Balents, Stephen D. Wilson, and Ilija Zeljkovic. Cascadeofcorrelated electron states in the kagome superconductor CsV3Sb5. Nature, 599(7884):216–221, Sep 2021.
[44] Hui Chen, Haitao Yang, Bin Hu, Zhen Zhao, Jie Yuan, Yuqing Xing, Guojian Qian, Zihao Huang, Geng Li, Yuhan Ye, Sheng Ma, Shunli Ni, Hua Zhang, Qiangwei Yin, Chunsheng Gong, Zhijun Tu, Hechang Lei, Hengxin Tan, Sen Zhou, Chengmin Shen, Xiaoli Dong, Binghai Yan, Ziqiang Wang, and Hong-Jun Gao. Roton pair density wave in a strong-coupling kagome superconductor. Nature, 599(7884):222–228, Sep 2021.
[45] Titus Neupert, M Michael Denner, Jia-Xin Yin, Ronny Thomale, and M Zahid Hasan. Charge order and superconductivity in kagome materials. Nature Physics, 18(2):137–143, Feb 2022.
[46] S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M. Tranquada, A. Kapitulnik, and C. Howald. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys., 75:1201–1241, Oct 2003.
[47] J. M. Tranquada. Cuprate superconductors as viewed through a striped lens. Advances in Physics, 69(4):437–509, 2020.
[48] J. M. Tranquada, D. J. Buttrey, V. Sachan, and J. E. Lorenzo. Simultaneous Ordering of Holes and Spins in La2NiO4.125. Phys. Rev. Lett., 73:1003–1006, Aug 1994.
[49] S.-H. Lee and S-W. Cheong. Melting of Quasi-Two-Dimensional Charge Stripes in La5/3Sr1/3NiO4. Phys. Rev. Lett., 79:2514–2517, Sep 1997.
[50] Junjie Zhang, D. Phelan, A. S. Botana, Yu-Sheng Chen, Hong Zheng, M. Krogstad, Suyin Grass Wang, Yiming Qiu, J. A. Rodriguez-Rivera, R. Osborn, S. Rosenkranz, M. R. Norman, and J. F. Mitchell. Intertwined density waves in a metallic nickelate. Nature Communications, 11(1), Nov 2020.
[51] Lebing Chen, Xiaokun Teng, Hengxin Tan, Barry Winn, Garrett Granroth, Feng Ye, Dehong Yu, R. Mole, Bin Gao, Binghai Yan, Ming Yi, and Pengcheng Dai. Competing itinerant and local spin interactions in kagome metal FeGe. Nature Communications, 15, Mar 2024.
[52] Jia-Xin Yin, Yu-Xiao Jiang, Xiaokun Teng, Md. Shafayat Hossain, Sougata Mardanya, Tay-Rong Chang, Zijin Ye, Gang Xu, M. Michael Denner, Titus Neupert, Benjamin Lienhard, Han-Bin Deng, Chandan Setty, Qimiao Si, Guoqing Chang, Zurab Guguchia, Bin Gao, Nana Shumiya, Qi Zhang, Tyler A. Cochran, Daniel Multer, Ming Yi, Pengcheng Dai, and M. Zahid Hasan. Discovery of Charge Order and Corresponding Edge State in Kagome Magnet FeGe. Phys. Rev. Lett., 129:166401, Oct 2022.
[53] H. Miao, T. T. Zhang, H. X. Li, G. Fabbris, A. H. Said, R. Tartaglia, T. Yilmaz, E. Vescovo, J. X. Yin, S. Murakami, X. L. Feng, K. Jiang, X. L. Wu, A. F. Wang, S. Okamoto, Y. L. Wang, and H. N. Lee. Signature of spin-phonon coupling driven charge density wave in a kagome magnet. Nature Communications, 14:6183, Oct2023.
[54] Shuo-Ying Yang, Yaojia Wang, Brenden R. Ortiz, Defa Liu, Jacob Gayles, Elena Derunova, Rafael Gonzalez-Hernandez, Libor Šmejkal, Yulin Chen, Stuart S. P. Parkin, Stephen D. Wilson, Eric S. Toberer, Tyrel McQueen, and Mazhar N. Ali. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Science Advances, 6(31):eabb6003, 2020.
[55] F. H. Yu, T. Wu, Z. Y. Wang, B. Lei, W. Z. Zhuo, J. J. Ying, and X. H. Chen. Concurrence of anomalous Hall effect and charge density wave in a superconducting topological kagome metal. Phys. Rev. B, 104:L041103, Jul 2021.
[56] J. Bernhard, B. Lebech, and O. Beckman. Neutron diffraction studies of the low temperature magnetic structure of hexagonal FeGe. Journal of Physics F:Metal Physics, 14(10):2379, Oct 1984.
[57] J. Bernhard, B. Lebech, and O. Beckman. Magnetic phase diagram of hexagonal FeGe determined by neutron diffraction. Journal of Physics F:Metal Physics,18(3):539, Mar 1988.
[58] O Beckman, K Carrander, L Lundgren, and M Richardson. Susceptibility Measurements and Magnetic Ordering of Hexagonal FeGe. Physica Scripta, 6(2-3):151, Aug1972.
[59] T. Suzuki, Robin Chisnell, A. Devarakonda, Y.-T Liu, W. Feng, D. Xiao, Jeffrey Lynn, and J.G. Checkelsky. Large anomalous Hall effect in a half-Heusler antiferromagnet. Nature Physics, 12, Jul 2016.
[60] F. D. M. Haldane. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett., 61:2015–2018, Oct 1988.
[61] C. M. Varma. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B, 55:14554–14580, Jun 1997.
[62] M. Michael Denner, Ronny Thomale, and Titus Neupert. Analysis of Charge Order in the Kagome Metal AV3Sb5 (A = K,Rb,Cs). Phys. Rev. Lett., 127:217601, Nov 2021.
[63] Charles Mielke, Debarchan Das, J-X Yin, H Liu, R Gupta, Y-X Jiang, Marisa Medarde, X Wu, Hechang C Lei, J Chang, Pengcheng Dai, Qimiao Si, H Miao, Ronny Thomale, Titus Neupert, Y Shi, Rustem Khasanov, M Zahid Hasan, Hubertus Luetkens, and Z Guguchia. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature, 602(7896):245–250, Feb 2022.
[64] Xilin Feng, Kun Jiang, Ziqiang Wang, and Jiangping Hu. Chiral flux phase in the Kagome superconductor AV3Sb5. Science Bulletin, 66(14):1384–1388, 2021.
[65] Mingu Kang, Linda Ye, Shiang Fang, Jhih-Shih You, Abe Levitan, Minyong Han, Jorge I. Facio, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Mun K. Chan, Ross D. McDonald, David Graf, Konstantine Kaznatcheev, Elio Vescovo, David C. Bell, Efthimios Kaxiras, Jeroen van den Brink, Manuel Richter, Madhav Prasad Ghimire, Joseph G. Checkelsky, and Riccardo Comin. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nature Materials, 19(2):163–169, Dec2019.
[66] I. I. Mazin, Harald O. Jeschke, Frank Lechermann, Hunpyo Lee, Mario Fink, Ronny Thomale, and Roser Valentí. Theoretical prediction of a strongly correlated Dirac metal. Nature Communications, 5(1), Jul 2014.
[67] W. Heisenberg. Zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, 49(910):619–636, Sep 1928.
[68] Andrew Boothroyd. Principles of Neutron Scattering from Condensed Matter. Ch.8. Oxford University Press, Jul 2020.
[69] G. Grüner. The dynamics of spin-density waves. Rev. Mod. Phys., 66:1–24, Jan 1994.
[70] Rafael M. Fernandes, Amalia I. Coldea, Hong Ding, Ian R. Fisher, P. J. Hirschfeld, and Gabriel Kotliar. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature (London), 601(7891), Jan 2022.
[71] Man Li, Qi Wang, Guangwei Wang, Zhihong Yuan, Wenhua Song, Rui Lou, Zhengtai Liu, Yaobo Huang, Zhonghao Liu, Hechang Lei, Zhiping Yin, and Shancai Wang. Dirac cone, flat band and saddle point in kagome magnet YMn6Sn6. Nature Communications, 12:3129, Jan 2021.
[72] Xueliang Wu, Xinrun Mi, Long Zhang, Chin-Wei Wang, Nour Maraytta, Xiaoyuan Zhou, Mingquan He, Michael Merz, Yisheng Chai, and Aifeng Wang. Annealing-Tunable Charge Density Wave in the Magnetic Kagome Material FeGe. Phys. Rev. Lett., 132:256501, Jun 2024.
[73] Ziyuan Chen, Xueliang Wu, Ruotong Yin, Jiakang Zhang, Shiyuan Wang, Yuanji Li, Mingzhe Li, Aifeng Wang, Yilin Wang, Ya-Jun Yan, and Dong-Lai Feng. Instability of the charge density wave in the kagome magnet FeGe. Physical Review B, 110(24), Dec 2024.
[74] Mason L. Klemm, Saif Siddique, Yuan-Chun Chang, Sijie Xu, Yaofeng Xie, Tanner Legvold, Mehrdad T. Kiani, Xiaokun Teng, Bin Gao, Feng Ye, Huibo Cao, Yiqing Hao, Wei Tian, Hubertus Luetkens, Masaaki Matsuda, Douglas Natelson, Zurab Guguchia, Chien-Lung Huang, Ming Yi, Judy J. Cha, and Pengcheng Dai. Vacancy-induced suppression of charge density wave order and its impact on magnetic order in kagome antiferromagnet FeGe. Nature Communications, 16(1), apr 2025.
[75] Qi Wang, Kelly J. Neubauer, Chunruo Duan, Qiangwei Yin, Satoru Fujitsu, Hideo Hosono, Feng Ye, Rui Zhang, Songxue Chi, Kathryn Krycka, Hechang Lei, and Pengcheng Dai. Field-induced topological Hall effect and double-fan spin structure with a c-axis component in the metallic kagome antiferromagnetic compound YMn6Sn6. Phys. Rev. B, 103:014416, Jan 2021.