簡易檢索 / 詳目顯示

研究生: 徐嘉良
Hsu, Chia-Liang
論文名稱: 建構無線感測網路之平衡負載演算法
Genetic Clustering Deployment in Wireless Sensor Networks
指導教授: 鄭憲宗
Cheng, Sheng-Tzong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 47
中文關鍵詞: 無線感測網路基因最佳化程序基因演算法感測器負載平衡叢集資料收集器
外文關鍵詞: Cluster, Sensor, Sink, Wireless Sensor Network, Load-Balanced, Genetic Algorithm, Genetic Optimization Process
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   行動計算(Mobile Computing)技術日益成熟,創造了廣大商機。行動計算之成功可以歸功於兩項因素:(1) 電腦設計技術之演進,使得輕、薄、短小的新穎電腦設備不斷推陳出新,例如筆記型電腦、掌上型電腦、PDA 等,不但計算功能強大,其可攜性便利了人們的生活和工作。(2) 無線通訊技術之進展迅速,包含各種無線通訊和傳輸方式,如第二代行動通訊、第三代行動通訊、無線區域網路、藍芽、超寬頻通訊之成熟。

      近年來,在無線通訊中的無線感測網路(Wireless Sensor Networks)快速掘起,成為工商業界和學術界急於參與的一大領域。它主要的潛在用途在於在軍事上與民生上的環境監控,也被廣泛的應用在工業上,如自動化系統或製造監控。生物科技界在慢慢跨入此領域以求更便利的醫療環境。

      無線感測網路是由一群分散的節點所組成,每個節點具有偵測、計算、通訊和定位的功能,也就是所謂的感測器(Sensor)。無線感測網路經由大量的感測器應用於定位、部署、和追蹤,透過資料聚集(Data Aggregation)和資料匯整(Data Fusion)來取得有效資訊。在已部署好的無線感測器中,架構起網路組織,使資訊能以消耗最少感測器能量的狀況回傳到使用者端是一項相當重要的研究議題之一。

      在這篇論文中我們提出一演算法則,以叢集架構(Cluster-Based)來組織感測器。藉由基因演算法找出Cluster-Heads的位置,同時平衡叢集之間的負載,達到負載平衡(Load-Balanced),以延長無線感測網路的生命週期。

      Mobile Computing technology is ripe day by day, and creates the vast business opportunity. Success of Mobile Computing can owe the credit to two factors: (1) The gradual progress of the designing technique of the computer, make that light, thin, short and small novel computer equipments weed out the old and bring forth the new constantly, such as notebook, PDA, and etc.. The equipments not only calculate powerfully, and facilitate humans' life. (2) The progress of wireless communication technology is fast, including various kinds of wireless communication and transmitting methods, such as 2G, 3G, WLAN, Bluetooth and UWB.

      Wireless sensor network rise sharply recently, and become a great field that industrial, commercial and academia participate in eagerly. It has potential to monitor environments for both military and civil applications, and is applied to industry, such as automatic system and monitoring of manufacture. Biotechnology also has a hand in it to seek for more convenient medical environment.

      A wireless sensor network is composed of a distributed collection of nodes, each of which has sensing, computation, communication, and locomotion capabilities. To support a large number of sensors on location, deployment, and tracking of wireless sensor networks, the location and the number of the nodes that perform data fusion and data aggregation are usually the important point of problem.

      In this paper we suppose an algorithm to network these sensors into cluster-based network. By way of Genetic Algorithm to find the location of cluster-heads and balance load among these clusters simultaneously to extend the lifetime of wireless sensor networks.

    摘要..........................................................i Abstract......................................................ii 誌謝..........................................................iii Table of Contents.............................................iv List of Tables................................................vi List of Figures...............................................vii Chapter 1 Introduction.......................................1 Chapter 2 Background and Related Work........................3 2.1 Sensor Networks..........................................3 2.1.1 The Origin of Sensor Networks..........................4 2.1.2 Sensor Networks Communication Architecture.............5 2.1.3 Design Factors.........................................6 2.1.4 Sensor Hardware Design.................................8 2.2 Radio Model..............................................10 2.3 Genetic Optimization Process.............................12 2.4 Related Work.............................................15 Chapter 3 Genetic Clustering Deployment......................16 3.1 Cluster Quantity Determination...........................16 3.2 Genetic Optimization Process.............................19 3.3 Sensor Clustering........................................21 3.4 Fitness Evaluation.......................................22 3.5 Termination Criterion....................................23 Chapter 4 Performance Evaluation.............................25 4.1 Environmental Setup......................................25 4.2 Performance Results......................................27 4.3 Follow-Up Research.......................................32 Chapter 5 Applications in The Present and Future.............34 5.1 Sensor Network Applications..............................34 5.1.1 Military applications..................................34 5.1.2 Health Applications....................................36 5.1.3 Home Applications......................................36 5.1.4 Environmental Applications.............................37 5.1.5 Other Commercial Applications..........................38 5.2 IEEE 1451 and Smart Sensors..............................40 Chapter 6 Conclusions........................................42 References....................................................43

    [1] Dr. Terry J.etal, “10 Emerging Technologies That Will Change the World”, http://www.globalfuture.com/mit-trends2003.htm

    [2] W. Rabiner et al., “Energy-Efficient Communication Protocols for Wireless Microsensor Networks,” Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS '00), January 2000, pp. 1-10.

    [3] SMART DUST Autonomous sensing and communication in a cubic millimeter, http://robotics.eecs.berkeley.edu/~pister/SmartDust/

    [4] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next Century Challenges: Mobile Networking for Smart Dust,” Proc. ACM MobiCom ’99, Washington, DC, 1999, pp. 271–78.

    [5] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion: A Scalable and Robust Communication Paradigm for Sensor Networks,” Proc. ACM MobiCom’ 00, Boston, MA, 2000, pp. 56–67.

    [6] E. Shih et al., “Physical Layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks,” Proc. ACM MobiCom ’01, Rome, Italy, July 2001, pp. 272–86.

    [7] μ–Adaptive Multi-domain Power aware Sensors, http://www-mtl.mit.edu/research/icsystems/uamps/

    [8] E. Shih et al., “Physical Layer Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks,” Proc. ACM MobiCom ’01, Rome, Italy, July 2001, pp. 272–86.

    [9] A. Woo, and D. Culler, “A Transmission Control Scheme for Media Access in Sensor Networks,” Proc. ACM MobiCom ’01, Rome, Italy, July 2001, pp.221–35.

    [10] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,” Commun. ACM, vol. 43, no. 5, May 2000, pp. 551-58.

    [11] W. B. Heinzelman., Application-Specific Protocol Architectures for Wireless Networks, Ph.D. Thesis, Massachusetts Institute of Technology, June 2000.

    [12] John H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, Cambridge, Mass.: MIT Press, 1992.

    [13] M. Mitchell, An Introduction to Genetic Algorithms, Massachusetts Institute of Technology, 1996.

    [14] Coley, David A., An introduction to Genetic Algorithms for scientists and engineers, World Scientific, 1996.

    [15] G. Gupta, M. Younis, “Load-balanced clustering in wireless sensor networks”, Proceedings of the International Conference on Communication (ICC), Anchorage, AK, 2003, pp. 1848-1852.

    [16] Gerla and J.T.C Tsai, “Multicluster, mobile, multimedia radio network,” ACM/Baltzer Journal of Wireless networks, Vol. 1, No. 3, 1995, pp. 255-265.

    [17] Baker and A. Ephremides, "A Distributed algorithm for Organizing Mobile Radio Telecommunication Networks", Proceedings of the 2nd International Conference in Distributed Computer Systems, April 1981.

    [18] Y. Yuan, Z. Yang, J. HE, “Determining The Number of Nodes Based on Energy Consumption for Wireless Sensor Networks”

    [19] Chen, et al., “Span: An Energy-Efficient Coordination Algorithm for Topology Maintenance in Ad Hoc Wireless Networks”, Proc. of the 7th ACM Mobile Computing and Communication (MobiCom 2001), Rome, Italy, July 2001, pp. 85-96.

    [20] D. Estrin, R. Govindan, J. Heidemann, S. Kumar, “Next century challenges: scalable coordination in sensor networks”, ACM MobiCom’99, Washingtion, USA, 1999, pp. 263–270.

    [21] N. Bulusu, D. Estrin, L. Girod, J. Heidemann, “Scalable coordination for wireless sensor networks: self-configuring localization systems”, International Symposium on Communication Theory and Applications (ISCTA 2001), Ambleside, UK, July 2001.

    [22] N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, “Monitoring behavior in home using a smart fall sensor”, IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, October 2000, pp. 607–610.

    [23] J.M. Rabaey, M.J. Ammer, J.L. da Silva Jr., D. Patel, S. Roundy, “PicoRadio supports ad hoc ultra-low power wireless networking”, IEEE Computer Magazine (2000) 42–48.

    [24] B. Warneke, B. Liebowitz, K.S.J. Pister, “Smart dust: communicating with a cubic-millimeter computer”, IEEE Computer (January 2001) 2–9.

    [25] M. Ogawa et al., “Fully automated biosignal acquisition in daily routine through 1 month”, International Conference on IEEE-EMBS, Hong Kong, 1998, pp. 1947–1950.

    [26] B.G. Celler et al., “An instrumentation system for the remote monitoring of changes in functional health status of the elderly”, International Conference IEEE-EMBS, New York, 1994, pp. 908–909.

    [27] P. Bauer, M. Sichitiu, R. Istepanian, K. Premaratne, “The mobile patient: wireless distributed sensor networks for patient monitoring and care”, Proceedings 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine, 2000, pp. 17–21.

    [28] N. Noury, T. Herve, V. Rialle, G. Virone, E. Mercier, G. Morey, A. Moro, T. Porcheron, “Monitoring behavior in home using a smart fall sensor”, IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, October 2000, pp. 607–610.

    [29] B. Sibbald, “Use computerized systems to cut adverse drug events: report”, CMAJ: Canadian Medical Association Journal 164 (13) (2001) 1878, 1/2p, 1c.

    [30] E.M. Petriu, N.D. Georganas, D.C. Petriu, D. Makrakis, V.Z. Groza, “Sensor-based information appliances”, IEEE Instrumentation and Measurement Magazine (December 2000) 31–35.

    [31] G.D. Abowd, J.P.G. Sterbenz, “Final report on the interagency workshop on research issues for smart environments”, IEEE Personal Communications (October 2000) 36–40.

    [32] C. Herring, S. Kaplan, “Component-based software systems for smart environments”, IEEE Personal Communications, October 2000, pp. 60–61.

    [33] I.A. Essa, “Ubiquitous sensing for smart and aware environments”, IEEE Personal Communications (October 2000) 47–49.

    [34] J. Agre, L. Clare, “An integrated architecture for cooperative sensing networks”, IEEE Computer Magazine (May 2000) 106–108. Finland, June 2001.

    [35] M. Bhardwaj, T. Garnett, A.P. Chandrakasan, “Upper bounds on the lifetime of sensor networks”, IEEE International Conference on Communications ICC’01, Helsinki, Finland, June 2001.

    [36] P. Bonnet, J. Gehrke, P. Seshadri, “Querying the physical world”, IEEE Personal Communications (October 2000) 10–15.

    [37] A. Cerpa, D. Estrin, “ASCENT: adaptive self-configuring sensor networks topologies”, UCLA Computer Science Department Technical Report UCLA/CSDTR-01-0009, May 2001.

    [38] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, “Habitat monitoring: application driver for wireless communications technology”, ACM SIGCOMM’2000, Costa Rica, April 2001.

    [39] S. Cho, A. Chandrakasan, “Energy-efficient protocols for low duty cycle wireless microsensor”, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI Vol. 2 (2000), p. 10.

    [40] A. Chandrakasan, R. Amirtharajah, S. Cho, J. Goodman, G. Konduri, J. Kulik, W. Rabiner, A. Wang, “Design considerations for distributed micro-sensor systems”, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference, San Diego, CA, May 1999, pp. 279–286.

    [41] M.P. Hamilton, M. Flaxman, “Scientific data visualization and biological diversity: new tools for spatializing multimedia observations of species and ecosystems”, Landscape and Urban Planning 21 (1992) 285–297.

    [42] http://www.alertsystems.org

    [43] T. Imielinski, S. Goel, “DataSpace: querying and monitoring deeply networked collections in physical space”, ACM International Workshop on Data Engineering for Wireless and Mobile Access MobiDE 1999, Seattle, Washington, 1999, pp. 44–51.

    [44] J.M. Rabaey, M.J. Ammer, J.L. da Silva Jr., D. Patel, S. Roundy, “PicoRadio supports ad hoc ultra-low power wireless networking”, IEEE Computer Magazine (2000) 42–48.

    [45] G.J. Pottie, W.J. Kaiser, “Wireless integrated network sensors”, Communications of the ACM 43 (5) (2000) 551–558.

    [46] Conway and Heffernan, Univ. Limerick, 2003, http://wwww.ul.ie/~pei

    下載圖示 校內:立即公開
    校外:2004-07-29公開
    QR CODE