簡易檢索 / 詳目顯示

研究生: 魏銘學
Wei, Ming-Xue
論文名稱: 多孔SiO2空心球製備蛋白石光子晶體與其光學應用
Preparation of opal structurated photonic crystal by using porous SiO2 hollow spheres and its optical applications
指導教授: 吳毓純
Wu, Yu-Chung
共同指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 164
中文關鍵詞: 二氧化矽空心球光子晶體膠體晶體自組裝stöber法
外文關鍵詞: low refractive index, high angular resolution, SERS, colloidal crystal, hollow spheres
相關次數: 點閱:139下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以等溫誘導自組裝滴液塗裝法(Isotherm Heating Evaporation Induced Self-Assembly Drop casting method)將膠體粒子藉由自組裝製備為蛋白石光子晶體,實驗分別針對多孔的SiO2空心球、SiO2/PMMA複層球型粒子,與傳統的Stöber球型氧化矽粒子作為光子晶體的光學性質進行探討。

    第一部分採用改良的Stöber method合成出單分散二氧化矽實心球,透過調整氨水濃度及矽前驅體(Precursor)濃度製備出粒徑大小介於181 nm至634 nm的球型粒子,透過膠體粒子的自組裝,得到具有面心最密堆積結構(Face center cubic)的光子晶體,其光子能隙位置隨著粒徑大小的不同,可調節於紫外光區至紅外光區的範圍。光子能隙遵守布拉格-斯乃爾定律(Bragg-Snell’s law),會隨著光入射的角度增加而產生藍移的現象。由UV-Vis之反射光譜所獲得之波長可對應CIE1931色彩空間呈現之顏色。本研究另外透過熱處理溫度改變氧化矽實心球的折射率,可降低光子能隙的波長。

    第二部分的研究中,探討以硬模板法製備二氧化矽空心球的機制,以及在反應過程中,改變TEOS濃度及pH值等合成條件對形成核-殼結構膠體粒子之影響。另外,中空球之球殼厚度與TEOS濃度、Gelatin濃度以及pH值呈現正比關係,與作為溶劑的H2O呈現反比關係;由氮氣吸脫附曲線的分析中得知,球殼厚度增加能提供更多的孔洞結構故能有效的增加表面積;由動態光散射儀之結果發現,以TEOS作為前驅體鍛燒後可形成均一粒徑分佈的空心球型粒子。

    第三部分的研究中,將所製備的SiO2/PMMA複層結構球型粒子以及氧化矽空心球以滴液塗裝法進行自組裝的排列,探討與傳統實心球的差異性。其中無孔的複層結構球型粒子與傳統Stöber球所構成的光子晶體相比,在波長於350 nm-500 nm波長之範圍則多出一個吸收峰,說明核-殼結構球會對光子晶體產生影響;此外,當球殼厚度的增加時將導致光子能隙產生紅移的現象。而多孔的空心球與前述兩者相比具有較低的折射率(n≒1.05),雖與空氣折射率較為接近仍可產生布拉格繞射的現象,並具有高角解析度的特性,可隨著光入射角度的調整涵蓋整體可見光的波長700 nm - 380 nm的範圍,達到虹彩的結構色;在研究過程中亦發現改變膠體粒子自組裝與進行熱處理移除模板的順序,可獲得兩種不同的結果,分別為具有無序結構的淡藍色空心球光子玻璃,及有序排列的虹彩色空心球光子晶體。

    第四部分嘗試將光子晶體作為濃度感測器、表面增強拉曼散射基板以及反光織物等應用進行討論,當作為濃度感測器之應用時,具有高角解析度的空心球光子晶體,可藉由其孔洞結構吸附亞甲基藍以及透過吸附後折射率的改變,使光子能隙產生明顯的偏移,展示出高靈敏度的特性;而對於表面增強拉曼散射基板之應用結果證實,光子晶體可以藉由與拉曼雷射波長與光子能隙波長交疊,進而增加拉曼光譜的訊號強度。由實心球所構成的光子晶體可透過高材料折射率的特性增加反射強度,使拉曼光譜之偵測極限增加;而低折射率的多孔空心球則可透過孔洞結構貢獻表面粗糙度以及散射強度,提升待測物於基板上的比例,進而增加拉曼光譜之偵測極限;最終,以滴液塗裝法可將膠體粒子自組裝於織物上,作為機能性的光子晶體布料,可透過自發放射的特性增強光的反射量,並可隨角度產生明顯的顏色變化。

    Materials with low refractive indices have high transmittance and high optical sensitivity. In recent years, the application of materials with low refractive indices in the optical field has attracted considerable attention. In this study, we synthesized porous SiO2 hollow spheres with a low refractive index by using a hard template method and controlled their refractive indices by changing precursor concentrations to synthesize shells of different thicknesses. Changing the angle of incident light on the prepared colloidal crystal caused a large deviation in the photonic band gap. Iridescent color changes could be observed with the naked eye, demonstrating high angular resolution, which is expected to be a priority for next-generation sensors. In addition, more analyte was loaded by the porous shells, and metal nanoparticles were spaced out to improve the generation of hotspots, which produced a high Raman signal intensity in the material’s application as a surface-enhanced Raman scattering substrate.

    目錄 摘要 I Extended Abstract III 致謝 XXIV 目錄 XXVI 表目錄 XXX 圖目錄 XXXII 第一章 緒論 1 1.1前言 1 第二章 文獻回顧 4 2.1 單分散膠體粒子(Monodisperse Colloid Particle): 4 2.2 史托伯法(Stöber method) 4 2.3 溶膠凝膠法(sol-gel method) 5 2.4 模板法(Template method) 7 2.4.1 硬模板法合成步驟(Hard template process) 9 2.4.2界面活性劑 (Surfactant) 10 2.4.3明膠(Gelatin)簡介 14 2.5光子材料(Photonic material) 15 2.5.1光子晶體 (Photonic crystal) 16 2.5.2光子能隙(Photonic band gap) 18 2.5.3 反蛋白石結構簡介(Invers opal photonic crystal) 20 2.6 空心球型粒子光子晶體(hollow spheres photonic crystal) 21 2.7 光子玻璃(photonic glass) 23 2.8自組裝沉積法簡介: 25 第三章 實驗方法與藥品 27 3.1製備二氧化矽實心球光子晶體 29 3.2製備PMMA@SiO2複層球型粒子 32 3.2.1製備SiO2/PMMA光子晶體 34 3.3製備SiO2空心球 34 3.3.1製備SiO2空心球光子晶體、光子玻璃 36 3.4材料性質分析 37 3.4.1掃描式電子顯微鏡(Scattering Electron microscope, SEM) 37 3.4.2穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 38 3.4.3動態光散射儀(Dynamic light scattering, DLS) 38 3.4.4氮氣等溫吸/脫附測量(N2 adsorption/desorption isotherms) 39 3.4.5紫外光可見光/近紅外光 分光光譜儀(UV/VIS/NIR spectrophotometer) 41 3.4.6接觸角量測儀(contact angle meter) 41 第四章 二氧化矽實心球之製備與其光子晶體特性研究 42 4.1 改良式Stöber法製備單一粒徑二氧化矽實心球形粒子 42 4.1.1氨水濃度對實心球粒徑之影響 43 4.2 TEOS前驅體濃度對實心球粒徑之影響 46 4.3討論TEOS濃度及氨水濃度對於合成SiO2球型粒子之比較 49 4.4 改良式Stöber法之機制探討 52 4.5以滴定塗裝法排列實心球光子晶體 54 4.5.1製備二氧化矽膠體溶液 55 4.5.2玻璃表面修飾 56 4.5.3利用滴定塗裝法製備蛋白石結構光子晶體 57 4.5.4 N1-N4樣品之光子晶體製備 57 4.5.5實心球光子晶體之光學性質探討 60 4.5.6改變角度量測光子晶體光學性質分析 71 4.5.7改變熱處理溫度對光子能隙的影響 73 4.6實心球光子晶體總結 75 第五章 合成均一粒徑之SiO2-PMMA核殼球形粒子 77 5.1 pH值於SiO2/PMMA核殼球形粒子合成影響 77 5.1.1 pH值對PMMA模板分散性的影響 77 5.1.2 pH值對合成SiO2/PMMA分散性的影響 79 5.1.3 pH值對SiO2空心球的表面形貌影響 81 5.1.4 pH值對SiO2空心球之球殼厚度的影響 82 5.1.5 pH值影響之綜合討論 83 5.2 Gelatin含量對於SiO2/PMMA核殼球形粒子之合成影響 86 5.2.1 Gelatin濃度對PMMA模板分散性影響 86 5.2.2 Gelatin濃度對合成空心球的影響 87 5.2.3 Gelatin濃度對SiO2空心球之球殼厚度的影響 88 5.2.4 Gelatin濃度於不同合成階段影響之綜合討論 90 5.3 H2O對於SiO2/PMMA核殼球形粒子之合成影響 90 5.3.1探討H2O添加量對PMMA模板分散性影響 90 5.3.2 H2O添加量對空心球表面形貌的影響 92 5.3.3 H2O添加量對空心球之球殼厚度的影響 93 5.3.4 H2O添加量於不同合成階段影響之綜合討論 95 5.4 TEOS對於SiO2/PMMA核殼球形粒子之合成影響 96 5.4.1 TEOS濃度對PMMA模板分散性的影響 96 5.4.2 TEOS濃度對空心球表面形貌的影響 97 5.4.3 TEOS添加量對空心球之球殼厚度的影響 99 5.4.4 TEOS添加量對空心球比表面積的影響 100 5.4.5 TEOS添加量於不同合成階段影響之綜合討論 101 5.5 空心球之分散性及均一性之綜合討論 103 5.6合成複層球形粒子總結 106 第六章 複層球形粒子之光子晶體之光學性質分析 108 6.1 探討SiO2/PMMA複層球型粒子光子晶體之光學性質 109 6.2 SiO2空心球光子晶體之光學性質 112 6.3空心球光子晶體之光學性質綜合討論 121 6.4空心球粉體之光學性質分析 126 6.4.1空心球光子玻璃之光學性質分析 129 6.5空心球光子晶體、光子玻璃總結 132 第七章 光子晶體之應用 134 7.1空心球光子晶體作為化學傳感器的探討 134 7.2光子晶體作為反射布料的應用 135 7.3光子晶體作為SERS的探討 136 7.4光子晶體之應用結論 143 第八章 總結論 144 參考文獻 147

    英文摘要參考文獻
    [1] Kim, C., Baek, S., Ryu, Y., Kim, Y., Shin, D., Lee, C. W., ... & Kim, K. (2018). Large-scale nanoporous metal-coated silica aerogels for high SERS effect improvement. Scientific reports, 8(1), 1-10.
    [2] Kim, Y., Baek, S., Gupta, P., Kim, C., Chang, K., Ryu, S. P., ... & Kim, K. (2019). Air-like plasmonics with ultralow-refractive-index silica aerogels. Scientific reports, 9(1), 1-9.
    [3] Yan, X., Poxson, D. J., Cho, J., Welser, R. E., Sood, A. K., Kim, J. K., & Schubert, E. F. (2013). Enhanced omnidirectional photovoltaic performance of solar cells using multiple‐discrete‐layer tailored‐and low‐refractive index anti‐reflection coatings. Advanced Functional Materials, 23(5), 583-590.
    [4] Xi, J. Q., Kim, J. K., & Schubert, E. F. (2005). Silica nanorod-array films with very low refractive indices. Nano letters, 5(7), 1385-1387.
    [5] Chhajed, S., Schubert, M. F., Kim, J. K., & Schubert, E. F. (2008). Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics. Applied Physics Letters, 93(25), 251108.
    [6] Cao, K. L. A., Taniguchi, S., Nguyen, T. T., Arif, A. F., Iskandar, F., & Ogi, T. (2020). Precisely tailored synthesis of hexagonal hollow silica plate particles and their polymer nanocomposite films with low refractive index. Journal of Colloid and Interface Science.
    [7] Tao, C., Yan, H., Yuan, X., Yin, Q., Zhu, J., Ni, W., ... & Zhang, L. (2016). Sol-gel based antireflective coatings with superhydrophobicity and exceptionally low refractive indices built from trimethylsilanized hollow silica nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 307-313.
    [8] Tao, C., Zou, X., Du, K., Zhang, L., Yan, H., & Yuan, X. (2018). Ultralow-refractive-index optical thin films built from shape-tunable hollow silica nanomaterials. Optics letters, 43(8), 1802-1805.
    [9] Bao, L., Ji, Z., Wang, H., & Chen, R. (2017). Hollow rodlike MgF2 with an ultralow refractive index for the preparation of multifunctional antireflective coatings. Langmuir, 33(25), 6240-6247.
    [10] Du, Y., Luna, L. E., Tan, W. S., Rubner, M. F., & Cohen, R. E. (2010). Hollow silica nanoparticles in UV− visible antireflection coatings for poly (methyl methacrylate) substrates. ACS nano, 4(7), 4308-4316.
    [11] Lee, J., Hwang, S. H., Yun, J., & Jang, J. (2014). Fabrication of SiO2/TiO2 Double-Shelled Hollow Nanospheres with Controllable Size via Sol–Gel Reaction and Sonication-Mediated Etching. ACS applied materials & interfaces, 6(17), 15420-15426.
    [12] Ruda, H. E., & Matsuura, N. (2017). Nano-engineered tunable photonic crystals. In Springer Handbook of Electronic and Photonic Materials (pp. 1-1). Springer, Cham.
    [13] Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals: putting a new twist on light. Nature, 386(6621), 143-149.
    [14] Xia, Y., Gates, B., & Li, Z. Y. (2001). Self‐assembly approaches to three‐dimensional photonic crystals. Advanced Materials, 13(6), 409-413.
    [15] Norris, D. J., Arlinghaus, E. G., Meng, L., Heiny, R., & Scriven, L. E. (2004). Opaline photonic crystals: how does self‐assembly work?. Advanced Materials, 16(16), 1393-1399.
    [16] Zhong, K., Wang, L., Li, J., Van Cleuvenbergen, S., Bartic, C., Song, K., & Clays, K. (2017). Real-time fluorescence detection in aqueous systems by combined and enhanced photonic and surface effects in patterned hollow sphere colloidal photonic crystals. Langmuir, 33(19), 4840-4846.
    [17] Xiong, C., Zhao, J., Wang, L., Geng, H., Xu, H., & Li, Y. (2017). Trace detection of homologues and isomers based on hollow mesoporous silica sphere photonic crystals. Materials Horizons, 4(5), 862-868.
    [18] Kou, D., Ma, W., Zhang, S., Lutkenhaus, J. L., & Tang, B. (2018). High-performance and multifunctional colorimetric humidity sensors based on mesoporous photonic crystals and nanogels. ACS applied materials & interfaces, 10(48), 41645-41654.
    [19] Zhong, K., Li, J., Liu, L., Van Cleuvenbergen, S., Song, K., & Clays, K. (2018). Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Advanced Materials, 30(25), 1707246.
    [20] Zhong, K., Song, K., & Clays, K. (2018). Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics. Nanophotonics, 7(4), 693-713.
    [21] Zhou, C., Qi, Y., Zhang, S., Niu, W., Wu, S., Ma, W., & Tang, B. (2020). Bilayer Heterostructure Photonic Crystal Composed of Hollow Silica and Silica Sphere Arrays for Information Encryption. Langmuir, 36(5), 1379-1385.
    [22] Yablonovitch, E. (1993). Photonic band-gap structures. JOSA B, 10(2), 283-295.
    [23] Ramanujam, N. R., Wilson, K. J., Mahalakshmi, P., & Taya, S. A. (2019). Analysis of photonic band gap in photonic crystal with epsilon negative and double negative materials. Optik, 183, 203-210.
    [24] Wu, S., Liu, T., Tang, B., Li, L., & Zhang, S. (2019). Structural color circulation in a bilayer photonic crystal by increasing the incident angle. ACS applied materials & interfaces, 11(10), 10171-10177.
    [25] Su, X., Jiang, Y., Sun, X., Wu, S., Tang, B., Niu, W., & Zhang, S. (2017). Fabrication of tough photonic crystal patterns with vivid structural colors by direct handwriting. Nanoscale, 9(45), 17877-17883.
    [26] Cai, Z., Yan, Y., Liu, L., Lin, S., & Hu, X. (2017). Controllable fabrication of metallic photonic crystals for ultra-sensitive SERS and photodetectors. RSC advances, 7(88), 55851-55858.
    [27] Zhao, X., Xue, J., Mu, Z., Huang, Y., Lu, M., & Gu, Z. (2015). Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosensors and Bioelectronics, 72, 268-274.
    [28] Kassim, S., Tahrin, R. A. A., & Harun, N. A. (2020). Metallic Core-Shell Photonic Crystals for Surface-Enhanced Raman Scattering (SERS). Plasmonics, 1-7.
    [29] Chen, J., Qin, G., Shen, W., Li, Y., & Das, B. (2015). Fabrication of long-range ordered, broccoli-like SERS arrays and application in detecting endocrine disrupting chemicals. Journal of Materials Chemistry C, 3(6), 1309-1318.
    [30] Zhang, C., Xu, J., & Chen, Y. (2020). Preparation of Monolayer Photonic Crystals from Ag Nanobulge-Deposited SiO2 Particles as Substrates for Reproducible SERS Assay of Trace Thiol Pesticide. Nanomaterials, 10(6), 1205.
    [31] Tsvetkov, M. Y., Khlebtsov, B. N., Khanadeev, V. A., Bagratashvili, V. N., Timashev, P. S., Samoylovich, M. I., & Khlebtsov, N. G. (2013). SERS substrates formed by gold nanorods deposited on colloidal silica films. Nanoscale research letters, 8(1), 1-9.
    [32] Wang, F., Zhang, X., Zhu, J., & Lin, Y. (2016). Preparation of structurally colored films assembled by using polystyrene@ silica, air@ silica and air@ carbon@ silica core–shell nanoparticles with enhanced color visibility. RSC Advances, 6(44), 37535-37543.
    [33] Zhong, K., Liu, L., Lin, J., Li, J., Van Cleuvenbergen, S., Brullot, W., ... & Clays, K. (2016). Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Advanced Materials Interfaces, 3(18), 1600579.
    [34] Ruckdeschel, P., Kemnitzer, T. W., Nutz, F. A., Senker, J., & Retsch, M. (2015). Hollow silica sphere colloidal crystals: insights into calcination dependent thermal transport. Nanoscale, 7(22), 10059-10070.
    [35] Fang, X., Chen, C., Liu, Z., Liu, P., & Zheng, N. (2011). A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale, 3(4), 1632-1639.
    [36] Nandiyanto, A. B. D., Akane, Y., Ogi, T., & Okuyama, K. (2012). Mesopore-free hollow silica particles with controllable diameter and shell thickness via additive-free synthesis. Langmuir, 28(23), 8616-8624.
    [37] Ernawati, L., Ogi, T., Balgis, R., Okuyama, K., Stucki, M., Hess, S. C., & Stark, W. J. (2016). Hollow silica as an optically transparent and thermally insulating polymer additive. Langmuir, 32(1), 338-345.
    [38] Chen, W., Takai, C., Khosroshahi, H. R., Fuji, M., & Shirai, T. (2015). Surfactant-free fabrication of SiO2-coated negatively charged polymer beads and monodisperse hollow SiO2 particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 481, 375-383.
    [39] Zhang, L., D’Acunzi, M., Kappl, M., Auernhammer, G. K., Vollmer, D., van Kats, C. M., & van Blaaderen, A. (2009). Hollow silica spheres: synthesis and mechanical properties. Langmuir, 25(5), 2711-2717.
    [40] Gao, T., Jelle, B. P., Sandberg, L. I. C., & Gustavsen, A. (2013). Monodisperse hollow silica nanospheres for nano insulation materials: synthesis, characterization, and life cycle assessment. ACS applied materials & interfaces, 5(3), 761-767.
    [41] Hughes, J.M.; Budd, P.M.; Tiede, K.; Lewis, J. Polymerized high internal phase emulsion monoliths for the chromatographic separation of engineered nanoparticles. J. Appl. Polym. Sci. 2015, 132.
    [42] Galisteo‐López, J. F., Ibisate, M., Sapienza, R., Froufe‐Pérez, L. S., Blanco, Á., & López, C. (2011). Self‐assembled photonic structures. Advanced Materials, 23(1), 30-69
    [43] Mastrangeli, M., Abbasi, S., Varel, C., Van Hoof, C., Celis, J. P., & Böhringer, K. F. (2009). Self-assembly from milli-to nanoscales: methods and applications. Journal of micromechanics and microengineering, 19(8), 083001.
    [44] Schueth, F., & Schmidt, W. (2002). Microporous and mesoporous materials. Advanced Engineering Materials, 4(5), 269-279.
    [45] Zhu, Y. F., Shi, J. L., Li, Y. S., Chen, H. R., Shen, W. H., & Dong, X. P. (2005). Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microporous and Mesoporous Materials, 85(1-2), 75-81.
    [46] Jiang, Y., Mu, D., Chen, S., Wu, B., Zhao, Z., Wu, Y., ... & Wu, F. (2018). Hollow silica spheres with facile carbon modification as an anode material for lithium-ion batteries. Journal of Alloys and Compounds, 744, 7-14.
    [47] Shen, B. H., Hsieh, M. L., Chen, H. Y., & Wu, J. Y. (2013). The preparation of hollow silica spheres with mesoporous shell via polystyrene emulsion latex template and the investigation of ascorbic acid release behavior. Journal of Polymer Research, 20(8), 220.
    [48] Xu, L., & He, J. (2012). Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir, 28(19), 7512-7518.
    [49] Guillemot, F., Brunet-Bruneau, A., Bourgeat-Lami, E., Gacoin, T., Barthel, E., & Boilot, J. P. (2010). Latex-templated silica films: tailoring porosity to get a stable low-refractive index. Chemistry of Materials, 22(9), 2822-2828.
    [50] Zhang, Y., Zhao, C., Wang, P., Ye, L., Luo, J., & Jiang, B. (2014). A convenient sol–gel approach to the preparation of nano-porous silica coatings with very low refractive indices. Chemical Communications, 50(89), 13813-13816.
    [51] Chen, J., Wang, B., Yang, Y., Shi, Y., Xu, G., & Cui, P. (2012). Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings. Applied optics, 51(28), 6839-6843.
    [52] Cai, S., Zhang, Y., Zhang, H., Yan, H., Lv, H., & Jiang, B. (2014). Sol–gel preparation of hydrophobic silica antireflective coatings with low refractive index by base/acid two-step catalysis. ACS applied materials & interfaces, 6(14), 11470-11475.
    [53] Coasne, B., Hung, F. R., Pellenq, R. J. M., Siperstein, F. R., & Gubbins, K. E. (2006). Adsorption of simple gases in MCM-41 materials: the role of surface roughness. Langmuir, 22(1), 194-202.
    [54] Jung, S. B., Ha, T. J., & Park, H. H. (2007). Roughness and pore structure control of ordered mesoporous silica films for the enhancement of electrical properties. Journal of applied physics, 101(2), 024109.
    [55] Abdelghani, A., Chovelon, J. M., Jaffrezic-Renault, N., Lacroix, M., Gagnaire, H., Veillas, C., ... & Matejec, V. (1997). Optical fibre sensor coated with porous silica layers for gas and chemical vapour detection. Sensors and Actuators B: Chemical, 44(1-3), 495-498.
    [56] King, B. H., Wong, T., & Sailor, M. J. (2011). Detection of pure chemical vapors in a thermally cycled porous silica photonic crystal. Langmuir, 27(13), 8576-8585.
    [57] Echeverría, J. C., Faustini, M., & Garrido, J. J. (2016). Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs. Sensors and Actuators B: Chemical, 222, 1166-1174.
    [58] Romanov, S. G., Maka, T., Torres, C. S., Müller, M., Zentel, R., Cassagne, D., ... & Jouanin, C. (2001). Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals. Physical Review E, 63(5), 056603.
    [59] Lai, C. F., & Li, J. S. (2019). Self-assembly of colloidal Poly (St-MMA-AA) core/shell photonic crystals with tunable structural colors of the full visible spectrum. Optical Materials, 88, 128-133.
    [60] Pang, S., Yang, T., & He, L. (2016). Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 85, 73-82.
    [61] Liou, P., Nayigiziki, F. X., Kong, F., Mustapha, A., & Lin, M. (2017). Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydrate polymers, 157, 643-650.
    [62] Song, D., Yang, R., Long, F., & Zhu, A. (2019). Applications of magnetic nanoparticles in surface-enhanced Raman scattering (SERS) detection of environmental pollutants. Journal of Environmental Sciences, 80, 14-34.
    [63] Song, C., Yang, B., Zhu, Y., Yang, Y., & Wang, L. (2017). Ultrasensitive sliver nanorods array SERS sensor for mercury ions. Biosensors and Bioelectronics, 87, 59-65.
    [64] Tang, S., Li, Y., Huang, H., Li, P., Guo, Z., Luo, Q., ... & Yu, X. F. (2017). Efficient enrichment and self-assembly of hybrid nanoparticles into removable and magnetic SERS substrates for sensitive detection of environmental pollutants. ACS applied materials & interfaces, 9(8), 7472-7480.
    [65] Newmai, M. B., Verma, M., & Kumar, P. S. (2018). Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots. Applied Surface Science, 440, 133-143.
    [66] Zhang, T., Sun, Y., Hang, L., Li, H., Liu, G., Zhang, X., ... & Li, Y. (2018). Periodic porous alloyed Au–Ag nanosphere arrays and their highly sensitive SERS performance with good reproducibility and high density of hotspots. ACS applied materials & interfaces, 10(11), 9792-9801.
    [67] Yamaguchi, A., Fukuoka, T., Takahashi, R., Hara, R., & Utsumi, Y. (2016). Dielectrophoresis-enabled surface enhanced Raman scattering on gold-decorated polystyrene microparticle in micro-optofluidic devices for high-sensitive detection. Sensors and Actuators B: Chemical, 230, 94-100.
    [68] Hu, Y., Zhao, T., Zhu, P., Zhu, Y., Liang, X., Sun, R., & Wong, C. P. (2016). Tailoring size and coverage density of silver nanoparticles on monodispersed polymer spheres as highly sensitive SERS substrates. Chemistry–An Asian Journal, 11(17), 2428-2435.
    [69] Chen, W. T., Cheng, Y. W., Yang, M. C., Jeng, R. J., Liu, T. Y., Wang, J. K., & Wang, Y. L. (2019). Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. The Journal of Physical Chemistry C, 123(30), 18528-18535.
    [70] Anju, K. S., Gayathri, R., Subha, P. P., Kumar, K. R., & Jayaraj, M. K. (2019). Optimally distributed Ag over SiO2 nanoparticles as colloidal SERS substrate. Microchemical Journal, 147, 349-355.

    論文參考文獻
    1. Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science, 26(1), 62-69.
    2. Ajina, C., Fathima Shabana, M. A., Krishnendu, P. S., & Thomas, S. (2017, June). Silica nano-spheres prepared by modified Stober process for colloidal crystal growth. In AIP Conference Proceedings (Vol. 1849, No. 1, p. 020041). AIP Publishing LLC.
    3. Aspasio, R. D., Borges, R., & Marchi, J. (2018). Sol-Gel Synthesis of Amorphous Silica Nanoparticles: Study of the Process Parameters Influence on Structure and Particle Size Distribution. In Materials Science Forum (Vol. 912, pp. 77-81). Trans Tech Publications Ltd.
    4. Bhakta, S., Dixit, C. K., Bist, I., Jalil, K. A., Suib, S. L., & Rusling, J. F. (2016). Sodium hydroxide catalyzed monodispersed high surface area silica nanoparticles. Materials research express, 3(7), 075025.
    5. Yan, Y., Fu, J., Xu, L., Wang, T., & Lu, X. (2016). Controllable synthesis of SiO2 nanoparticles: effects of ammonia and tetraethyl orthosilicate concentration. Micro & Nano Letters, 11(12), 885-889.
    6. Zhang, J. H., Zhan, P., Wang, Z. L., Zhang, W. Y., & Ming, N. B. (2003). Preparation of monodisperse silica particles with controllable size and shape. Journal of materials research, 18(3), 649-653.
    7. Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing—a review. Journal of sol-gel science and technology, 78(3), 698-707.
    8. Ro, J. C., & Chung, I. J. (1989). Sol-gel kinetics of tetraethylorthosilicate (TEOS) in acid catalyst. Journal of non-crystalline solids, 110(1), 26-32.
    9. Kang, S., Kim, J., Kim, J., Oh, W., & Chan, S. (2016). Performance Evaluation of Anti-Reflection Coating on Photovoltaic Modules. Journal of the Korean Solar Energy Society, 36(5), 1-8.
    10. Kajihara, K. (2013). Recent advances in sol–gel synthesis of monolithic silica and silica-based glasses. Journal of Asian Ceramic Societies, 1(2), 121-133.
    11. Lin, S., Yan, Y., Cai, Z., Liu, L., & Hu, X. (2018). A Host‐Configured Lithium–Sulfur Cell Built on 3D Nickel Photonic Crystal with Superior Electrochemical Performances. Small, 14(21), 1800616.
    12. Fiandaca, M. S., & Bankiewicz, K. S. (2013). Micelles and liposomes: lipid nanovehicles for intracerebral drug delivery. In The Textbook of Nanoneuroscience and Nanoneurosurgery (pp. 76-89). CRC Press.
    13. Saraswathi, T. S., Mothilal, M., & Jaga Nathan, M. K. (2019). Niosomes as an emerging formulation tool for drug delivery–a review. Int J App Pharm, 11, 7-15.
    14. Dutt, S., Siril, P. F., & Remita, S. (2017). Swollen liquid crystals (SLCs): a versatile template for the synthesis of nano structured materials. RSC advances, 7(10), 5733-5750.
    15. Hoque, M. E., Nuge, T., Yeow, T. K., Nordin, N., & Prasad, R. G. S. V. (2015). Gelatin based scaffolds for tissue engineering-a review. Polymers Research Journal, 9(1), 15.
    16. Devi, N., Sarmah, M., Khatun, B., & Maji, T. K. (2017). Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in colloid and interface science, 239, 136-145.
    17. Joannopoulos, J. D., Villeneuve, P. R., & Fan, S. (1997). Photonic crystals. Solid State Communications, 102(2-3), 165-173.
    18. Gao, W., Owens, H., & Rigout, M. Structural colours from self-assembled silica nanoparticles for textile coloration.
    19. Gao, W., Rigout, M., & Owens, H. (2016). Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. Journal of Nanoparticle Research, 18(12), 387.
    20. Chen, X., Xu, H., Hua, C., Zhao, J., Li, Y., & Song, Y. (2018). Synthesis of Silica Microspheres—Inspired by the Formation of Ice Crystals—With High Homogeneous Particle Sizes and Their Applications in Photonic Crystals. Materials, 11(10), 2017.
    21. Lu, Z., & Owens, H. (2019). Optimum processing parameters for coating polyester with silica nanoparticles using gravity sedimentation. Journal of Nanoparticle Research, 21(10), 212.
    22. von Freymann, G., Kitaev, V., Lotsch, B. V., & Ozin, G. A. (2013). Bottom-up assembly of photonic crystals. Chemical Society Reviews, 42(7), 2528-2554.
    23. Schroden, R. C., Al-Daous, M., Blanford, C. F., & Stein, A. (2002). Optical properties of inverse opal photonic crystals. Chemistry of materials, 14(8), 3305-3315.
    24. Emel’chenko, G. A., Masalov, V. M., Zhokhov, A. A., & Khodos, I. I. (2013). Microporous and mesoporous carbon nanostructures with the inverse opal lattice. Physics of the Solid State, 55(5), 1105-1110.
    25. Jin, L., Huang, X., Zeng, G., Wu, H., & Morbidelli, M. (2016). Conductive framework of inverse opal structure for sulfur cathode in lithium-sulfur batteries. Scientific reports, 6, 32800.
    26. Wang, J., Xu, Y., Xu, W., Zhang, M., & Chen, X. (2015). Simplified preparation of SnO2 inverse opal for methanol gas sensing performance. Microporous and Mesoporous Materials, 208, 93-97.
    27. Curti, M., Schneider, J., Bahnemann, D. W., & Mendive, C. B. (2015). Inverse opal photonic crystals as a strategy to improve photocatalysis: Underexplored questions. The journal of physical chemistry letters, 6(19), 3903-3910.
    28. Barry, R. A., & Wiltzius, P. (2006). Humidity-sensing inverse opal hydrogels. Langmuir, 22(3), 1369-1374.
    29. McNulty, D., Geaney, H., Armstrong, E., & O'Dwyer, C. (2016). High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes. Journal of Materials Chemistry A, 4(12), 4448-4456.
    30. Zhong, K., Liu, L., Lin, J., Li, J., Van Cleuvenbergen, S., Brullot, W., ... & Clays, K. (2016). Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Advanced Materials Interfaces, 3(18), 1600579.
    31. Zhong, K., Li, J., Liu, L., Van Cleuvenbergen, S., Song, K., & Clays, K. (2018). Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Advanced Materials, 30(25), 1707246.
    32. Yao, Y., Yao, J., Narasimhan, V. K., Ruan, Z., Xie, C., Fan, S., & Cui, Y. (2012). Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nature communications, 3(1), 1-7.
    33. García, P. D., Sapienza, R., Blanco, Á., & López, C. (2007). Photonic glass: a novel random material for light. Advanced Materials, 19(18), 2597-2602.
    34. Magkiriadou, S., Park, J. G., Kim, Y. S., & Manoharan, V. N. (2014). Absence of red structural color in photonic glasses, bird feathers, and certain beetles. Physical Review E, 90(6), 062302.
    35. Zhang, Y., Dong, B., Chen, A., Liu, X., Shi, L., & Zi, J. (2015). Using cuttlefish ink as an additive to produce non‐iridescent structural colors of high color visibility. Advanced Materials, 27(32), 4719-4724.
    36. Shang, G., Maiwald, L., Renner, H., Jalas, D., Dosta, M., Heinrich, S., ... & Eich, M. (2018). Photonic glass for high contrast structural color. Scientific reports, 8(1), 1-9.
    37. Topçu, G., Güner, T., & Demir, M. M. (2018). Non-iridescent structural colors from uniform-sized SiO2 colloids. Photonics and Nanostructures-Fundamentals and Applications, 29, 22-29.
    38. Huang, D., Zeng, M., Wang, L., Zhang, L., & Cheng, Z. (2018). Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots. RSC advances, 8(61), 34839-34847.
    39. Dziomkina, N. V., & Vancso, G. J. (2005). Colloidal crystal assembly on topologically patterned templates. Soft Matter, 1(4), 265-279.
    40. Jiang, Q., Li, C., Shi, S., Zhao, D., Xiong, L., Wei, H., & Yi, L. (2012). Assembling ultra-thick and crack-free colloidal crystals via an isothermal heating evaporation induced self-assembly method. Journal of non-crystalline solids, 358(12-13), 1611-1616.
    41. Holgado, M., Garcia-Santamaria, F., Blanco, A., Ibisate, M., Cintas, A., Miguez, H., ... & Meseguer, F. (1999). Electrophoretic deposition to control artificial opal growth. Langmuir, 15(14), 4701-4704.
    42. Fang, Q. R., Makal, T. A., Young, M. D., & Zhou, H. C. (2010). Recent advances in the study of mesoporous metal-organic frameworks. Comments on Inorganic Chemistry, 31(5-6), 165-195.
    43. Jones, J. R., Greasley, S. L., Page, S. J., Sirovica, S., Chen, S., Martin, R. A., & Porter, A. E. Controlling particle size in the Stöber process and incorporation of calcium.
    44. S. L. Chen, P. Dong, G. H. Yang, J. J. Yang, “ Kinetics of formation of monodispersed colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate, ” Industrial & Engineering Chemistry Research, 35, 4487 (1996).
    45. Hughes, J. M., Budd, P. M., Tiede, K., & Lewis, J. (2015). Polymerized high internal phase emulsion monoliths for the chromatographic separation of engineered nanoparticles. Journal of Applied Polymer Science, 132(1).
    46. Aspasio, R. D., Borges, R., & Marchi, J. (2018). Sol-Gel Synthesis of Amorphous Silica Nanoparticles: Study of the Process Parameters Influence on Structure and Particle Size Distribution. In Materials Science Forum (Vol. 912, pp. 77-81). Trans Tech Publications Ltd.
    47. Cong, H., Yu, B., Wang, S., Qi, L., Wang, J., & Ma, Y. (2013). Preparation of iridescent colloidal crystal coatings with variable structural colors. Optics express, 21(15), 17831-17838.
    48. Joannopoulos, J. D., Johnson, S. G., Winn, J. N., & Meade, R. D. (2008). Molding the flow of light. Princeton Univ. Press, Princeton, NJ [ua].
    49. Topçu, G., Güner, T., & Demir, M. M. (2018). Non-iridescent structural colors from uniform-sized SiO2 colloids. Photonics and Nanostructures-Fundamentals and Applications, 29, 22-29.
    50. Stetefeld, J., McKenna, S. A., & Patel, T. R. (2016). Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical reviews, 8(4), 409-427.
    51. Lei, X., Yu, B., Cong, H. L., Tian, C., Wang, Y. Z., Wang, Q. B., & Liu, C. K. (2014). Synthesis of monodisperse silica microspheres by a modified stöber method. Integrated Ferroelectrics, 154(1), 142-146.
    52. Han, Y., Lu, Z., Teng, Z., Liang, J., Guo, Z., Wang, D., ... & Yang, W. (2017). Unraveling the growth mechanism of silica particles in the stober method: in situ seeded growth model. Langmuir, 33(23), 5879-5890.
    53. Li, H., Xu, Z., Bao, B., Sun, N., & Song, Y. (2016). Improving the luminescence performance of quantum dot-based photonic crystals for white-light emission. Journal of Materials Chemistry C, 4(1), 39-44.
    54. Tian, Y., Chen, M., Zhang, J., Tong, Y. L., Wang, C. F., Wiederrecht, G. P., & Chen, S. (2018). Highly Enhanced Luminescence Performance of LEDs via Controllable Layer‐Structured 3D Photonic Crystals and Photonic Crystal Beads. Small Methods, 2(7), 1800104.
    55. Hou, J., Zhang, H., Yang, Q., Li, M., Jiang, L., & Song, Y. (2015). Hydrophilic–Hydrophobic Patterned Molecularly Imprinted Photonic Crystal Sensors for High‐Sensitive Colorimetric Detection of Tetracycline. Small, 11(23), 2738-2742.
    56. Zhao, X., Xue, J., Mu, Z., Huang, Y., Lu, M., & Gu, Z. (2015). Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy. Biosensors and Bioelectronics, 72, 268-274.
    57. Kuo, W. K., Weng, H. P., Hsu, J. J., & Yu, H. H. (2016). Photonic crystal-based sensors for detecting alcohol concentration. Applied Sciences, 6(3), 67.
    58. Xing, H., Li, J., Shi, Y., Guo, J., & Wei, J. (2016). Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS applied materials & interfaces, 8(14), 9440-9445.
    59. Lee, J. W., & Moon, J. H. (2015). Monolithic multiscale bilayer inverse opal electrodes for dye-sensitized solar cell applications. Nanoscale, 7(12), 5164-5168.
    60. Yu, J., Lei, J., Wang, L., Zhang, J., & Liu, Y. (2018). TiO2 inverse opal photonic crystals: Synthesis, modification, and applications-A review. Journal of Alloys and Compounds, 769, 740-757.
    61. Zhao, D., Liu, S., Yang, H., Ma, Z., Reuterskiöld-Hedlund, C., Hammar, M., & Zhou, W. (2016). Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon. Scientific reports, 6, 18860.
    62. Liu, G., Zhou, L., Fan, Q., Chai, L., & Shao, J. (2016). The vertical deposition self-assembly process and the formation mechanism of poly (styrene-co-methacrylic acid) photonic crystals on polyester fabrics. Journal of materials science, 51(6), 2859-2868.
    63. Gao, W., Rigout, M., & Owens, H. (2017). The structural coloration of textile materials using self-assembled silica nanoparticles. Journal of Nanoparticle Research, 19(9), 303.
    64. O'Dwyer, C. (2016). Color‐Coded Batteries–Electro‐Photonic Inverse Opal Materials for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics. Advanced Materials, 28(27), 5681-5688.
    65. Collins, G., Armstrong, E., McNulty, D., O’Hanlon, S., Geaney, H., & O’Dwyer, C. (2016). 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Science and Technology of advanced MaTerialS, 17(1), 563-582.
    66. Likodimos, V. (2018). Photonic crystal-assisted visible light activated TiO2 photocatalysis. Applied Catalysis B: Environmental, 230, 269-303.
    67. Chen, H., Lou, R., Chen, Y., Chen, L., Lu, J., & Dong, Q. (2017). Photonic crystal materials and their application in biomedicine. Drug Delivery, 24(1), 775-780.
    68. Kitano, K., Suzuki, K., Ishizaki, K., & Noda, S. (2015). Three-dimensional photonic crystals fabricated by simultaneous multidirectional etching. Physical Review B, 91(15), 155308.
    69. Grishina, D. A., Harteveld, C. A., Woldering, L. A., & Vos, W. L. (2015). Method for making a single-step etch mask for 3D monolithic nanostructures. Nanotechnology, 26(50), 505302.
    70. Wang, L., Wan, Y., Li, Y., Cai, Z., Li, H. L., Zhao, X. S., & Li, Q. (2009). Binary colloidal crystals fabricated with a horizontal deposition method. Langmuir, 25(12), 6753-6759.
    71. Russell, J. L., Noel, G. H., Warren, J. M., Tran, N. L. L., & Mallouk, T. E. (2017). Binary colloidal crystal films grown by vertical evaporation of silica nanoparticle suspensions. Langmuir, 33(39), 10366-10373.
    72. Liu, G., Zhou, L., Wu, Y., Wang, C., Fan, Q., & Shao, J. (2015). The fabrication of full color P (S t‐MAA) photonic crystal structure on polyester fabrics by vertical deposition self‐assembly. Journal of Applied Polymer Science, 132(13).
    73. Wu, Y., & Wang, X. (2015). Rapid preparation of hexagonal and square array colloidal crystals via electrophoresis-assisted self-assembly method. Materials Letters, 142, 109-111.
    74. Hung, P. S., Liao, C. H., Chou, Y. S., Wang, G. R., Wang, C. J., Chung, W. A., & Wu, P. W. (2019). High throughput fabrication of large-area colloidal crystals via a two-stage electrophoretic deposition method. Electrochimica Acta, 317, 52-60.
    75. Katagiri, K., Tanaka, Y., Uemura, K., Inumaru, K., Seki, T., & Takeoka, Y. (2017). Structural color coating films composed of an amorphous array of colloidal particles via electrophoretic deposition. NPG Asia Materials, 9(3), e355-e355.
    76. Koegler, P., Dunn, M., Wang, P. Y., Thissen, H., & Kingshott, P. (2016). A novel approach to quantitatively assess the uniformity of binary colloidal crystal assemblies. Crystals, 6(8), 84.
    77. Huang, D., Zeng, M., Wang, L., Zhang, L., & Cheng, Z. (2018). Biomimetic colloidal photonic crystals by coassembly of polystyrene nanoparticles and graphene quantum dots. RSC advances, 8(61), 34839-34847.
    78. Nagao, D., Kameyama, R., Matsumoto, H., Kobayashi, Y., & Konno, M. (2008). Single-and multi-layered patterns of polystyrene and silica particles assembled with a simple dip-coating. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317(1-3), 722-729.
    79. Jiang, Q., Li, C., Shi, S., Zhao, D., Xiong, L., Wei, H., & Yi, L. (2012). Assembling ultra-thick and crack-free colloidal crystals via an isothermal heating evaporation induced self-assembly method. Journal of non-crystalline solids, 358(12-13), 1611-1616.
    80. Po, WeiLi. (2011). Fabrication and characterization of colloidal crystal by drop-coating method.
    81. Gigault, C., Dalnoki-Veress, K., & Dutcher, J. R. (2001). Changes in the morphology of self-assembled polystyrene microsphere monolayers produced by annealing. Journal of colloid and interface science, 243(1), 143-155.
    82. Garcia-Santamaria, F., Miguez, H., Ibisate, M., Meseguer, F., & Lopez, C. (1942). Refractive index properties of calcined silica submicron spheres. Langmuir, 18, 2002.
    83. Kitaev, V., & Ozin, G. A. (2003). Self‐assembled surface patterns of binary colloidal crystals. Advanced Materials, 15(1), 75-78.
    84. Ding, H., Liu, C., Gu, H., Zhao, Y., Wang, B., & Gu, Z. (2014). Responsive colloidal crystal for spectrometer grating. ACS Photonics, 1(2), 121-126.
    85. Nishijima, Y., & Juodkazis, S. (2015). Optical characterization and lasing in three-dimensional opal-structures. Frontiers in Materials, 2, 49.
    86. Rastogi, V., Melle, S., Calderon, O. G., García, A. A., Marquez, M., & Velev, O. D. (2008). Synthesis of light‐diffracting assemblies from microspheres and nanoparticles in droplets on a superhydrophobic surface. Advanced Materials, 20(22), 4263-4268.
    87. Sperling, M., & Gradzielski, M. (2017). Droplets, evaporation and a superhydrophobic surface: Simple tools for guiding colloidal particles into complex materials. Gels, 3(2), 15.
    88. Peng, L. (2007). Absorption and emission properties of photonic crystals and metamaterials.
    89. Moiseev, S. G., Ostatochnikov, V. A., & Sementsov, D. I. (2013, September). Transmission and reflection spectra of photonic crystal with plasmonic defect layer. In 2013 International Conference on Advanced Optoelectronics and Lasers (CAOL 2013) (pp. 80-81). IEEE.
    90. Klapiszewski, Ł., Królak, M., & Jesionowski, T. (2014). Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites. Central European Journal of Chemistry, 12(2), 173-184.
    91. Gao, W., Rigout, M., & Owens, H. (2016). Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum. Applied Surface Science, 380, 12-15.
    92. Wang, F., Feng, L., Qin, Y., Zhao, T., Luo, H., & Zhu, J. (2019). Dual functional SiO 2@ TiO 2 photonic crystals for dazzling structural colors and enhanced photocatalytic activity. Journal of Materials Chemistry C, 7(38), 11972-11983.
    93. Ke, X., Yang, M., Wang, W., Luo, D., & Zhang, M. (2019). Incidence Dependency of Photonic Crystal Substrate and Its Application on Solar Energy Conversion: Ag2S Sensitized WO3 in FTO Photonic Crystal Film. Materials, 12(16), 2558.
    94. Venditti, I. (2017). Gold nanoparticles in photonic crystals applications: A review. Materials, 10(2), 97.
    95. Vasquez, Y., Kolle, M., Mishchenko, L., Hatton, B. D., & Aizenberg, J. (2014). Three-phase co-assembly: in situ incorporation of nanoparticles into tunable, highly ordered, porous silica films. Acs Photonics, 1(1), 53-60.
    96. Sun, S., Deng, T., Ding, H., Chen, Y., & Chen, W. (2017). Preparation of nano-TiO2-coated SiO2 microsphere composite material and evaluation of its self-cleaning property. Nanomaterials, 7(11), 367.
    97. Di Palma, P., Taddei, C., Borriello, A., De Luca, G., Giordano, M., Iadicicco, A., ... & Sansone, L. (2017). Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe. IEEE Photonics Journal, 9(2), 1-11.
    98. Zhuo, G. Y., Huang, S. W., & Lin, S. H. (2019). Wide-angle lasing from photonic crystal nanostructures of a liquid-crystalline blue phase. Journal of Materials Chemistry C, 7(21), 6433-6439.
    99. Kredel, J., Dietz, C., & Gallei, M. (2019). Fluoropolymer-containing opals and inverse opals by melt-shear organization. Molecules, 24(2), 333.
    100. Shrivastava, V. P., Sivakumar, S., & Kumar, J. (2015). Green color purification in Tb3+ ions through silica inverse opal heterostructure. ACS applied materials & interfaces, 7(22), 11890-11899.
    101. Amrehn, S., Wu, X., & Wagner, T. (2016). High-temperature stable indium oxide photonic crystals: transducer material for optical and resistive gas sensing. Journal of Sensors and Sensor Systems, 5(1), 179-185.
    102. Le, Y., Chen, J. F., Wang, J. X., Shao, L., & Wang, W. C. (2004). A novel pathway for synthesis of silica hollow spheres with mesostructured walls. Materials Letters, 58(15), 2105-2108.
    103. Pan, W., Ye, J., Ning, G., Lin, Y., & Wang, J. (2009). A novel synthesis of micrometer silica hollow sphere. Materials Research Bulletin, 44(2), 280-283.
    104. Graf, C., Vossen, D. L., Imhof, A., & van Blaaderen, A. (2003). A general method to coat colloidal particles with silica. Langmuir, 19(17), 6693-6700.
    105. Hong, J., Han, H., Hong, C. K., & Shim, S. E. (2008). A direct preparation of silica shell on polystyrene microspheres prepared by dispersion polymerization with polyvinylpyrrolidone. Journal of Polymer Science Part A: Polymer Chemistry, 46(8), 2884-2890.
    106. Montheil, T., Echalier, C., Martinez, J., Subra, G., & Mehdi, A. (2018). Inorganic polymerization: an attractive route to biocompatible hybrid hydrogels. Journal of Materials Chemistry B, 6(21), 3434-3448.
    107. Zhang, K., Wu, W., Meng, H., Guo, K., & Chen, J. F. (2009). Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology, 190(3), 393-400.
    108. Gallardo-Moreno, A. M., Vadillo-Rodríguez, V., Perera-Núñez, J., Bruque, J. M., & González-Martín, M. L. (2012). The zeta potential of extended dielectrics and conductors in terms of streaming potential and streaming current measurements. Physical Chemistry Chemical Physics, 14(27), 9758-9767.
    109. Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and surfaces B: Biointerfaces, 14(1-4), 105-119.
    110. Zhong, K., Li, J., Liu, L., Van Cleuvenbergen, S., Song, K., & Clays, K. (2018). Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Advanced Materials, 30(25), 1707246.
    111. Ruckdeschel, P., Kemnitzer, T. W., Nutz, F. A., Senker, J., & Retsch, M. (2015). Hollow silica sphere colloidal crystals: insights into calcination dependent thermal transport. Nanoscale, 7(22), 10059-10070.
    112. Wang, F., Zhang, X., Zhu, J., & Lin, Y. (2016). Preparation of structurally colored films assembled by using polystyrene@ silica, air@ silica and air@ carbon@ silica core–shell nanoparticles with enhanced color visibility. RSC Advances, 6(44), 37535-37543.
    113. Zhou, C., Qi, Y., Zhang, S., Niu, W., Wu, S., Ma, W., & Tang, B. (2020). Bilayer Heterostructure Photonic Crystal Composed of Hollow Silica and Silica Sphere Arrays for Information Encryption. Langmuir, 36(5), 1379-1385.
    114. Xiong, C., Zhao, J., Wang, L., Geng, H., Xu, H., & Li, Y. (2017). Trace detection of homologues and isomers based on hollow mesoporous silica sphere photonic crystals. Materials Horizons, 4(5), 862-868.
    115. Zhong, K., Liu, L., Lin, J., Li, J., Van Cleuvenbergen, S., Brullot, W., ... & Clays, K. (2016). Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Advanced Materials Interfaces, 3(18), 1600579.
    116. Xing, Z., Tay, S. W., Ng, Y. H., & Hong, L. (2017). Porous SiO2 hollow spheres as a solar reflective pigment for coatings. ACS applied materials & interfaces, 9(17), 15103-15113.
    117. Jiang, Q., Zhong, J., Hu, X., Song, F., Ren, K., Wei, H., & Yi, L. (2012). Fabrication and optical properties of silica shell photonic crystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 202-208.
    118. Fang, X., Chen, C., Liu, Z., Liu, P., & Zheng, N. (2011). A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres. Nanoscale, 3(4), 1632-1639.
    119. Ge, C., Zhang, D., Wang, A., Yin, H., Ren, M., Liu, Y., ... & Yu, L. (2009). Synthesis of porous hollow silica spheres using polystyrene–methyl acrylic acid latex template at different temperatures. Journal of Physics and Chemistry of Solids, 70(11), 1432-1437.
    120. Yun, D. S., Jang, H. G., & Yoo, J. W. (2011). Fabrication of uniform hollow silica nanospheres using a cationic polystyrene core. Bull Korean Chem Soc, 32(5), 1534-1538.
    121. Guo, L., Dong, X., Cui, X., Cui, F., & Shi, J. (2009). Morphology and dispersivity modulation of hollow microporous spheres synthesized by a hard template route. Materials Letters, 63(13-14), 1141-1143.
    122. Zhu, Y., Shi, J., Chen, H., Shen, W., & Dong, X. (2005). A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous and Mesoporous Materials, 84(1-3), 218-222.
    123. Fu, F., Shang, L., Zheng, F., Chen, Z., Wang, H., Wang, J., ... & Zhao, Y. (2016). Cells cultured on core–shell photonic crystal barcodes for drug screening. ACS applied materials & interfaces, 8(22), 13840-13848.
    124. Liu, B., Ni, H., Zhang, D., Wang, D., Fu, D., Chen, H., ... & Zhao, X. (2017). Ultrasensitive detection of protein with wide linear dynamic range based on core–shell SERS nanotags and photonic crystal beads. ACS sensors, 2(7), 1035-1043.
    125. Jia, X., Hu, Y., Wang, K., Liang, R., Li, J., Wang, J., & Zhu, J. (2014). Uniform Core–Shell Photonic Crystal Microbeads as Microcarriers for Optical Encoding. Langmuir, 30(40), 11883-11889.
    126. Wang, K., Chen, J., Zhou, W., Zhang, Y., Yan, Y., Pern, J., & Mascarenhas, A. (2008). Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Advanced materials, 20(17), 3248-3253.
    127. Wu, P., Shen, X., Schäfer, C. G., Pan, J., Guo, J., & Wang, C. (2019). Mechanochromic and thermochromic shape memory photonic crystal films based on core/shell nanoparticles for smart monitoring. Nanoscale, 11(42), 20015-20023.
    128. Squire, K. J., Sivashanmugan, K., Zhang, B., Kraai, J., Rorrer, G., & Wang, A. X. (2020). Multiscale Photonic Crystal Enhanced Core–Shell Plasmonic Nanomaterial for Rapid Vapor-Phase Detection of Explosives. ACS Applied Nano Materials, 3(2), 1656-1665.
    129. Zhong, K., Li, J., Liu, L., Van Cleuvenbergen, S., Song, K., & Clays, K. (2018). Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic crystals. Advanced Materials, 30(25), 1707246.
    130. Zhong, K., Khorshid, M., Li, J., Markey, K., Wagner, P. H., Song, K., ... & Clays, K. (2016). Fabrication of optomicrofluidics for real-time bioassays based on hollow sphere colloidal photonic crystals with wettability patterns. Journal of Materials Chemistry C, 4(33), 7853-7858.
    131. Zhong, K., Wang, L., Li, J., Van Cleuvenbergen, S., Bartic, C., Song, K., & Clays, K. (2017). Real-time fluorescence detection in aqueous systems by combined and enhanced photonic and surface effects in patterned hollow sphere colloidal photonic crystals. Langmuir, 33(19), 4840-4846.
    132. Zhong, K., Liu, L., Lin, J., Li, J., Van Cleuvenbergen, S., Brullot, W., ... & Clays, K. (2016). Bioinspired robust sealed colloidal photonic crystals of hollow microspheres for excellent repellency against liquid infiltration and ultrastable photonic band gap. Advanced Materials Interfaces, 3(18), 1600579.
    133. García, P. D., Sapienza, R., Blanco, Á., & López, C. (2007). Photonic glass: a novel random material for light. Advanced Materials, 19(18), 2597-2602.
    134. Retsch, M., Schmelzeisen, M., Butt, H. J., & Thomas, E. L. (2011). Visible Mie scattering in nonabsorbing hollow sphere powders. Nano letters, 11(3), 1389-1394.
    135. Shang, G., Maiwald, L., Renner, H., Jalas, D., Dosta, M., Heinrich, S., ... & Eich, M. (2018). Photonic glass for high contrast structural color. Scientific reports, 8(1), 1-9.
    136. Xue, Y., Wang, F., Luo, H., & Zhu, J. (2019). Preparation of Noniridescent Structurally Colored PS@ TiO2 and Air@ C@ TiO2 Core–Shell Nanoparticles with Enhanced Color Stability. ACS applied materials & interfaces, 11(37), 34355-34363.
    137. Sabban, S. (2011). Development of an in vitro model system for studying the interaction of Equus caballus IgE with its high-affinity FcεRI receptor (Doctoral dissertation, University of Sheffield).
    138. Van Dyck, C., Fu, B., Van Duyne, R. P., Schatz, G. C., & Ratner, M. A. (2018). Deducing the adsorption geometry of rhodamine 6G from the surface-induced mode renormalization in surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 122(1), 465-473.

    下載圖示 校內:2025-08-01公開
    校外:2025-08-01公開
    QR CODE