簡易檢索 / 詳目顯示

研究生: 黃思弘
Huang, Si-Hong
論文名稱: CMOS毫米波低功耗降頻混頻器及應用於單混頻器射頻收發機之可升降頻電阻式環型混頻器之研製
Research on CMOS Millimeter-Wave Low-Power Down-Conversion Mixer and Up-/Down-Conversion Resistive Ring Mixer for Single-Mixer RF Transceiver
指導教授: 莊惠如
Chuang, Huey-Ru
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 95
中文關鍵詞: 毫米波低功耗可升降頻混頻器環型混頻器
外文關鍵詞: 60-GHz, CMOS, millimeter-wave (MMW), low-power, up-/down-conversion, mixer, transimpedance amplifier (TIA), ring mixer, single-balanced
相關次數: 點閱:136下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製60-GHz COMS低功耗降頻混頻器及應用於單混頻器射頻收發機之可升降頻電阻式環型混頻器毫米波晶片。以上電路皆採用TSMC CMOS 90-nm GUTM 製程進行設計。60-GHz COMS低功耗降頻混頻器採用弱反轉區偏壓技術來達到低功率消耗及低LO功率,IF緩衝放大器採用轉阻放大器來提升整體轉換增益,並藉由轉阻放大器的回授電阻路徑提供mixer core所需的小電流,但不影響轉阻放大器正常操作。依頻率不同設計兩顆可升降頻電阻式環型混頻器,分別為60-GHz CMOS環型混頻器及80-105 GHz CMOS環型混頻器,其混頻的原理為利用電晶體閘極端之電壓變化,達到電晶體等效通道電阻值的改變,進而使輸出訊號為非線性。電路設計部份均使用Agilent ADS與Ansoft 3-D電磁模擬軟體HFSS進行模擬,量測部份則採以on-wafer方式進行量測,並根據所預計量測的特性參數不同,其量測方法與設置亦有所調整。

    This thesis presents the research on millimeter-wave (MMW) CMOS low-power down- conversion mixer and up-/down-conversion resistive ring mixer for COMS single mixer RF transceiver, which are implemented by 90-nm GUTM CMOS process. A 60-GHz COMS low-power down-conversion mixer uses weak-inversion bias technique to achieve low-power con- sumption and low LO power excitation, the IF buffer chooses trans-impedance amplifier (TIA) to enhance the total conversion gain. Since the mixer core current is so small, that it can be stolen from TIAs via the feedback resistors. Due to the current of mixer core is very small, the operation of TIAs can maintain normal. For up-/down-conversion resistive ring mixer design, we realized two mixers at different RF bands, which include CMOS ring mixers at 60-GHz and the 80-105 GHz bands. The resistive mixer design principle is using a large gate voltage swing of the transistor to change equivalent channel resistance, and the IF output signal has nonlinear effect. The Agilent ADS and Ansoft three-dimensional (3D) EM simulator HFSS were used for design simulation. The measured performances of the designed MMW CMOS mixer ICs were all performed by using on-wafer measurement. Simulation and measurement results are compared and discussed.

    目錄 第一章 緒論 1 1.1 研究動機與背景 1 1.2 論文架構 2 第二章 60-GHz CMOS 低功耗單平衡降頻混頻器 3 2.1 混頻器簡介 3 2.1.1 混頻器分類 4 2.1.2 轉換增益 10 2.1.3 隔離度 11 2.1.4 線性度 12 2.1.5 雜訊指數[14]-[17] 13 2.1.6 LO功率[11][18][19] 15 2.2 60-GHz CMOS 低功耗單平衡式降頻混頻器 16 2.2.1 弱反轉區偏壓技術 [22]-[25] 17 2.2.2 混頻器的LO閘極驅動與源極驅動[25] 20 2.2.3 轉阻放大器 [26]-[27] 21 2.2.4 馬遜平衡器[28][29] 24 2.2.5 威金森功率分波器[7] 26 2.2.6 電路設計流程與考量 27 2.2.7 量測環境設置 29 2.2.8 模擬與量測結果 30 2.2.9 結果與討論 32 第三章 應用於單混頻器射頻收發機之可升降頻電阻式環型混頻器設計 35 3.1 單混頻器射頻前端收發機系統簡介 35 3.2 60-GHz CMOS可升降頻電阻式環型混頻器 36 3.2.1 環型混頻器[11][39]-[42] 37 3.2.2 電路設計流程與考量 39 3.2.3 量測環境設置 39 3.2.4 模擬與量測結果 44 3.2.5 結果與討論 48 3.3 80-105 GHz CMOS可升降頻電阻式環形混頻器 50 3.3.1 電路設計流程與考量 51 3.3.2 量測環境設置 52 3.3.3 量測與模擬結果 55 3.3.4 結果與討論 59 3.4 文獻比較 60 第四章 結論 63 參考文獻 65 附錄A 60-GHz毫米波單混頻器射頻收發機及其整合之CMOS人造磁導體Yagi天線與帶通濾波器 69 A.1 60-GHz CMOS單混頻器射頻收發機架構簡介 69 A.2 60-GHz CMOS單混頻器射頻收發機之子電路介紹 70 A.3 60-GHz CMOS單混頻器射頻收發機子電路之模擬結果 72 A.4 量測環境設置 73 A.5 模擬與量測結果 74 A.6 結果與討論 79 附錄B 94-GHz整合GIPD摺合式偶極子1×2天線陣列之CMOS可升降頻次諧波電阻式混頻器毫米波射頻收發機 81 B.1 架構簡介 81 B.2 94-GHz CMOS可升降頻單端次諧波混頻器設計 82 B.3 混頻器電路設計流程與考量 84 B.4 94-GHz CMOS可升降頻單端次諧波混頻器模擬與量測 84 B.5 整合晶片量測環境設置 89 B.6 整合晶片模擬與量測結果 90 B.7 結果與討論 93

    參考文獻
    [1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
    [2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
    [3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
    [4] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
    [5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J. –C. Chien, and A. M. Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medical imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec. 2010.
    [6] H.-Y. Su, R. Hu and C.-Y. Wu, “A 78-102 GHz front-end receiver in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 9, pp. 489–491, Sep. 2011.
    [7] D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: Wiley, 2005.
    [8] Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
    [9] J.-A. Hou and Y.-H. Wang, “A Ka band balanced third LO-harmonic mixer using a lumped-elements quadrature hybrid,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 404–406, Jun. 2008.
    [10] B. R. Jackson, and C. E. Saavedra, “A CMOS Ku-band 4x subharmonic mixer,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1351–1359, Jun. 2008.
    [11] S. A. Maas, Microwave Mixers, 2nd ed., Artech House, 1993.
    [12] F. Ellinger, “26.5–30-GHz resistive mixer in 90-nm VLSI SOI CMOS technology with high linearity for WLAN,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 8, pp. 2559–2565, Aug. 2005.
    [13] F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. V. Buren, M. L. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel and H. Jackel “30–40-GHz drain-pumped passive-mixer MMIC fabricated on VLSI SOI CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1382–1391, May 2004.
    [14] B. Razavi, “RF Microelectronic,” NJ, USA: Prentice-Hall PTR, 1998.
    [15] 張盛富, 張嘉展, “無線通訊射頻晶片模組設計-射頻系統篇,” 全華科技, 2009。
    [16] RF course advanced IC for communication / ducting [Online]. Available : http://rfic.eecs.berkeley.edu/~niknejad/ee242/lectures.html
    [17] 歐雅文,毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百年。
    [18] R. C. H. Li, Key Issues in RF/RFIC Circuit Design, 2005.
    [19] 郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國 立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
    [20] C.-W. Byeon, J.-J. Lee, I.-S. Song, and C.-S. Park, “A 60 GHz current-reuse LO-boosting mixer in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 135–137, Mar. 2012.
    [21] M. Ercoli, M. Kraemer, D. Dragomirescu, and R. Plana, “A passive mixer for 60 GHz applications in CMOS 65nm technology,” in GeMIC 2010, 15-17 Mar. 2010.
    [22] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York, NY, USA: Oxford Univ. Press, 2002.
    [23] J.-H. Tsai, “Design of 40–108-GHz low-power and high-speed CMOS up-/down-conversion ring mixers for multistandard MMW radio applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 670–678, Mar. 2012.
    [24] H.-K. Chiou, and H.-T. Chou, “A 0.4 V microwatt power consumption current-reused up-conversion mixer,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 1, pp. 40–42, Jan. 2013.
    [25] W.-T. Li, H.-Y. Yang, Y.-C. Chiang, J.-H. Tsai, M.-H. Wu, and T.-W. Huang, “A 453-μW 53–70-GHz ultra-low-power double-balanced source-driven mixer using 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903–1912, May. 2013.
    [26] C.-H. Wu, C.-H. Lee, W.-S. Chen, and S.-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 548–552, Feb. 2005.
    [27] S.-F. Chao, J.-J. Kuo, C.-L. Lin, M.-D. Tsai and H. Wang, “A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 482–484, Jul. 2008.
    [28] 林育聖,60-GHz與26-/77-GHz雙頻帶CMOS被動元件及主動濾波器之研製,成功大學電腦與通信工程研究所碩士論文,民國九十八年。
    [29] J.-X. Liu. C.-Y. Hsu, H.-R. Chuang, and C.-Y. Chen, “A 60-GHz millimeter-wave CMOS Marchand balun,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007, pp. 445-448.
    [30] 郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零一年。
    [31] C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 521–523, Aug. 2009.
    [32] M. Kraemer, M. Ercoli, D. Dragomirescu, and R. Plana, “A wideband single-balanced down-mixer for the 60 GHz band in 65 nm CMOS,” in Asia–Pacific Microw. Conf., 2010, pp. 1849–1852.
    [33] C.-H. Lien, P.-C. Huang, K.-Y. Kao, K.-Y. Lin, and H.-Wang, “60 GHz double-balanced gate-pumped down-conversion mixers with a combined hybrid on 130 nm CMOS processes,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 3, pp. 160–162, Mar. 2010.
    [34] S.-Y. Liu and H.-R Chuang, “A 2.4 GHz ISM-band digital wireless transceiver,” Applied Microwave & Wireless, pp. 32-48, June 1998.
    [35] S.-K. Lin, J.-L. Kuo and H. Wang, “A 60 GHz sub-harmonic resistive FET mixer using 0.13 μm CMOS technology, ” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 10, pp. 562–564 Oct. 2011.
    [36] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw.Wireless Compon. Lett.,vol. 16, no. 1, pp. 25–27 Jan. 2006.
    [37] M. Varonen, M. Karkkainen, and K. A. I. Halonen, “V-band balanced resistive mixer in 65-nm CMOS”, IEEE ESSCIRC Conf., pp. 360-363, Sep. 2007.
    [38] H.-J. Wei, C.-C. Meng, P.-Y. Wu, and K.-C. Tsung, “K-band CMOS sub-harmonic resistive mixer with a miniature Marchand balun on lossy silicon substrate,” IEEE Microw.Wireless Compon. Lett., vol. 18, no. 1, pp. 40–42 Jan. 2008.
    [39] T. Chang, and J. Lin, “1-11 GHz ultra-wideband resistive ring mixer in 0.18µm CMOS technology”, in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2006.
    [40] I. Lo, X. Wang, O. Boric-Lubecke, Y. Hong, and C. Song, “Wide-band 0.25µm CMOS passive mixer”,in IEEE Radio Wireless Symp. Dig., Jan 2009, pp. 502-505.
    [41] J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18-um CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 2010, pp. 784–787.
    [42] C. Song, I. LO and O. B. Lubecke, “2.4 GHz 0.18 μm CMOS passive mixer with integrated balun,” in IEEE MTT-S Int. Microw. Symp. Dig. Jun. 2009, pp. 409–411.
    [43] W.-H. Lin, W.-L. Chang, J.-H. Tsai, and T.-W. Huang, “A 30-60GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,”in IEEE Radio and Wireless Symposium., 2009.
    [44] Y.-H. Lin, J.-L. Kuo, and H. Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in Proc. Eur. Microwave Conf., 2012, pp. 365–368.
    [45] H.-C. Kuo, H.-L. Yue, Y.-W. Ou, C.-C. Lin, and H.-R. Chuang, “A 60-GHz CMOS sub-harmonic RF receiver with integrated on-chip artificial-magnetic-conductor Yagi-antenna and balun-bandpass-filter for very-short-range gigabit communications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1681-1691, Apr. 2013.
    [46] C.-S. Kuo, H.-C. Kuo, H.-R. Chuang, C.-Y. Chen, and T.-H. Huang, “A high-isolation 60GHz CMOS transmit/receive switch,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2011, pp. 1–4.
    [47] 林建志,毫米波功率結合技術之CMOS功率放大器及60-GHz CMOS次諧波射頻收發機前端之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零三年。
    [48] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yoshihara, Y. Tsutsumi, and I. Seto, “A 60-GHz CMOS receiver front-end with frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1030–1037, Apr.. 2008.
    [49] Jri Lee, Y.-T. Chen, and Y.-L. Huang, “A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 264–275, Feb. 2010.
    [50] 阮文逸,94-及160-GHz毫米波CMOS / IPD射頻晶片天線及94-GHz整合IPD晶片天線之CMOS可升降頻混頻器之研製,成功大學電腦與通信工程研究所碩士論文,民國一百零四年。
    [51] C.-H. Liao, C.-H. Hsieh, R. Hu, D-C Niu and Y.-S. Shiao “W-band 90nm CMOS LNA design”, in IEEE Asia Pacific Microw. Conf. Dec. 2012. pp.430-432.
    [52] Y. Yan, Y. B. Karandikar, S. E. Gunnarsson, B. M. Motlagh, S. Cherednichenko, I. Kallfass, A. Leuther, and H. Zirath, “Monolithically integrated 200-GHz double-slot antenna and resistive mixers in a GaAs-mHEMT MMIC process,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2494-2503, Oct. 2011.

    下載圖示 校內:2020-09-07公開
    校外:2020-09-07公開
    QR CODE