| 研究生: |
劉俊輝 Liou, Jyun-Huei |
|---|---|
| 論文名稱: |
含希夫鹼基團之芘衍生物:合成、鑑定及在有機發光二極體之應用 Schiff Base-Modified Pyrene Derivative:Synthesis, Characterization and Application in Organic Light-Emitting Diodes |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 有機發光二極體 、電洞緩衝 、芘 、希夫鹼 、濕式製程 |
| 外文關鍵詞: | OLEDs, hole buffer, pyrene, Schiff base, solution process |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有機發光二極體由於擁有了許多的優點,已被譽為是下一世代的平面顯示器,而有機發光二極體的發光機制為電激發光,即為電子電洞分別由陰陽極注入,且經由載子傳輸層傳輸,最後在發光層再結合來產生光。因此載子的注入跟傳輸速率會影響元件的發光效率,然而在大多數有機材料中電洞的傳輸速率皆比電子來的快,傳輸到發光層的電洞遠多於電子,導致載子的再結合比率不佳,進而影響到元件的效率,因此降低電洞的傳輸速率則是讓有機發光二極體元件效率上升的有效方法之一。
本研究以Suzuki coupling合成出一新型的電洞緩衝材料(PSB),此PSB是以芘(pyrene)作為本體且含有兩個希夫鹼(Schiff base)基團,藉由此親電子性的基團來改變芘的載子傳導特性,進而降低電洞的傳輸速率。而PSB具有高的熱裂解溫度(300 oC),且由於結構阻礙堆疊所以沒有觀察到融解溫度(Tm)與結晶溫度(Tc),並能以旋轉塗佈製程成膜及製作發光元件。以循環伏安法量測計算出PSB的LUMO能階與HOMO能階分別為-2.55 eV與-6.33 eV。製備以PSB當電洞緩衝層的發光元件結構為ITO/PEDOT:PSS/PSB/SY/LiF/Al,其最大亮度為26,439 cd/m2,最大電流效率為7.03 cd/A,遠高於無電洞緩衝層之元件的9,802 cd/m2及2.43 cd/A,且相較於傳統常用的電洞阻擋材料BCP所製成的元件(ITO/PEDOT:PSS/SY/BCP/LiF/Al),無論是效率或亮度都有明顯的提升。這些結果都顯示此PSB為一個具有實用潛力之新穎電洞緩衝材料。
In recent years, organic light-emitting diodes (OLEDs) have been famous for its high efficiency, self-emissive ability, flexible property and wide view angle in flat panel displays and lighting sources. For increasing device efficiency, balance of hole and electron mobility within OLED is very importance. In this study, we successfully synthesized a new hole buffer material PSB which composed of pyrene, Schiff base and trihydroxy tert-butyl groups by Suzuki-coupling reaction. This material showed high thermal stability (Td = 300 oC) because of containing rigid groups. Moreover, PSB wasn’t observed Tm and Tc. In cyclic voltammetry measurement, HOMO and LUMO levels were -6.33 and -2.55 eV, respectively. In addition, homogeneous films were obtained by spin-coating. Multilayer OLED devices were fabricated by using PSB as hole buffer layer [ITO/PEDOT:PSS/PSB/SY/LiF/Al]. The best performance of PSB device (maximum luminance: 26,439 cd/m2, maximum current efficiency: 7.03 cd/A) was much better than the device without PSB [ITO/PEDOT:PSS/SY/LiF/Al] (9,802 cd/m2, 2.43 cd/A). The best PSB device was also better than the device with hole blocking material BCP [ITO/PEDOT:PSS/SY/BCP/LiF/Al] (15,496 cd/m2, 5.56 cd/A). These results indicated that PSB was an efficient hole buffer material.
參考資料
1. 陳金鑫,黃孝文, OLED 夢幻顯示器. 台灣:五南圖書出版股份有限公司, 2007.
2. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
3. C.W. Tang and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
4. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539-541.
5. 段啟聖, 化工資訊雜誌與商情, 民國94年. 第26期: p. 40.
6. H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang, and A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (Ch)X. Journal of the Chemical Society-Chemical Communications, 1977(16): p. 578-580.
7. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. Macdiarmid, Electrical-Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
8. B. Valeur and M.N. Berberan-Santos, Molecular fluorescence: principles and applications. 2012: John Wiley & Sons.
9. M. Lax, The Franck‐Condon Principle and Its Application to Crystals. The Journal of Chemical Physics, 1952. 20(11): p. 1752-1760.
10. W.T. Yip and D.H. Levy, Excimer/exciplex formation in van der Waals dimers of aromatic molecules. Journal of Physical Chemistry, 1996. 100(28): p. 11539-11545.
11. S. Beck, A. Hallam, and A.M. North, Excimer and Charge-Transfer Complex Trapping of Excitons in Carbazole Containing Polymers. Polymer, 1979. 20(10): p. 1177-1179.
12. M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
13. M. Lenzlinger and E. Snow, Fowler‐Nordheim Tunneling into Thermally Grown SiO2. Journal of Applied physics, 1969. 40(1): p. 278-283.
14. J.G. Simmons, Richardson-Schottky Effect in Solids. Physical Review Letters, 1965. 15(25): p. 967-&.
15. A. Rose, Space-Charge-Limited Currents in Solids. Physical Review, 1955. 97(6): p. 1538-1544.
16. Y. Yamashita, Organic semiconductors for organic field-effect transistors. Science and technology of advanced materials, 2016.
17. G.G. Malliaras, J.R. Salem, P.J. Brock, and C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414.
18. C.C. Wu, J.C. Sturm, R.A. Register, J. Tian, E.P. Dana, and M.E. Thompson, Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1269-1281.
19. J.J. Shiang and A.R. Duggal, Application of radiative transport theory to light extraction from organic light emitting diodes. Journal of Applied Physics, 2004. 95(5): p. 2880-2888.
20. S. Möller and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
21. G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, High-external-quantum-efficiency organic light-emitting devices. Opt Lett, 1997. 22(6): p. 396-8.
22. J.L. Segura, The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
23. K.M. Coakley and M.D. McGehee, Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
24. B.S. Ong, Y. Wu, P. Liu, and S. Gardner, High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc, 2004. 126(11): p. 3378-9.
25. J. Roncali, Conjugated Poly(Thiophenes) - Synthesis, Functionalization, and Applications. Chemical Reviews, 1992. 92(4): p. 711-738.
26. M.C. Choi, Y. Kim, and C.S. Ha, Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
27. I.V. AKIN, A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY. 2012.
28. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, Organic EL cells using alkaline metal compounds as electron injection materials. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1245-1248.
29. C. Ganzorig and M. Fujihira. Balanced Charge Injection and Singlet Exciton Quenching in Bilayer Organic Electroluminescent Devices. in MRS Proceedings. 2003. Cambridge Univ Press.
30. J. Huang, Z. Xu, and Y. Yang, Low‐Work‐Function Surface Formed by Solution‐Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007. 17(12): p. 1966-1973.
31. J.S. Chen, C.S. Shi, Q. Fu, F.C. Zhao, Y. Hu, Y.L. Feng, and D.G. Ma, Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs. Journal of Materials Chemistry, 2012. 22(11): p. 5164-5170.
32. L.S. Hung, C.W. Tang, M.G. Mason, P. Raychaudhuri, and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Applied Physics Letters, 2001. 78(4): p. 544-546.
33. G. Jabbour, B. Kippelen, N. Armstrong, and N. Peyghambarian, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied Physics Letters, 1998. 73(9): p. 1185-1187.
34. Z.Y. Sun, X.M. Ding, B.F. Ding, X.D. Gao, Y.M. Hu, X.Q. Chen, Y. He, and X.Y. Hou, Buffer-enhanced electron injection in organic light-emitting devices with copper cathode. Organic Electronics, 2013. 14(2): p. 511-515.
35. L.S. Hung, C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
36. L. Hung, R. Zhang, P. He, and G. Mason, Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. Journal of Physics D: Applied Physics, 2001. 35(2): p. 103.
37. T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters, 1998. 73(19): p. 2763-2765.
38. R. Schlaf, B.A. Parkinson, P.A. Lee, K.W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N.R. Armstrong, Photoemission spectroscopy of LiF coated Al and Pt electrodes. Journal of Applied Physics, 1998. 84(12): p. 6729-6736.
39. W.D. Xu, W.Y. Lai, Q. Hu, X.Y. Teng, X.W. Zhang, and W. Huang, A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. Polymer Chemistry, 2014. 5(8): p. 2942-2950.
40. F. Uckert, Y.H. Tak, K. Müllen, and H. Bässler, 2, 7‐Poly (9‐fluorenone): A Trap‐Free Electron‐Injection Material with a High Charge Carrier Mobility for Use in Light‐Emitting Diodes. Advanced Materials, 2000. 12(12): p. 905-908.
41. A.P. Kulkarni, C.J. Tonzola, A. Babel, and S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 2004. 16(23): p. 4556-4573.
42. S.A. Jenekhe and S.J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77(17): p. 2635-2637.
43. D. Chen, L. Han, W.P. Chen, Z.Y. Zhang, S.T. Zhang, B. Yang, Z.L. Zhang, J.Y. Zhang, and Y. Wang, Bis(2-(benzo[d]thiazol-2-yl)-5-fluorophenolate)beryllium: a high-performance electron transport material for phosphorescent organic light-emitting devices. Rsc Advances, 2016. 6(6): p. 5008-5015.
44. K.-i. Nakayama, J. Kido, M. Yokoyama, and Y.-J. Pu, Organic Field-Effect Transistors Using Hetero-Layered Structure with OLED Materials. 2011: INTECH Open Access Publisher.
45. S. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.D. Van Der Gon, W.R. Salaneck, and M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals, 2003. 139(1): p. 1-10.
46. D. Grozea, A. Turak, Y. Yuan, S. Han, Z.H. Lu, and W.Y. Kim, Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of Applied Physics, 2007. 101(3): p. 3522.
47. S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz, and Z.D. Popovic, CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
48. E.W. Forsythe, M.A. Abkowitz, and Y.L. Gao, Tuning the carrier injection efficiency for organic light-emitting diodes. Journal of Physical Chemistry B, 2000. 104(16): p. 3948-3952.
49. V.I. Adamovich, S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W. D'Andrade, and S.R. Forrest, New charge-carrier blocking materials for high efficiency OLEDs. Organic Electronics, 2003. 4(2-3): p. 77-87.
50. W.C. Lin, H.W. Lin, E. Mondal, and K.T. Wong, Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015. 17: p. 1-8.
51. H. Gao, C. Qin, H. Zhang, S. Wu, Z.M. Su, and Y. Wang, Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. J Phys Chem A, 2008. 112(38): p. 9097-103.
52. T.W. Lee, T. Noh, H.W. Shin, O. Kwon, J.J. Park, B.K. Choi, M.S. Kim, D.W. Shin, and Y.R. Kim, Characteristics of Solution‐Processed Small‐Molecule Organic Films and Light‐Emitting Diodes Compared with their Vacuum‐Deposited Counterparts. Advanced Functional Materials, 2009. 19(10): p. 1625-1630.
53. P. Kotchapradist, N. Prachumrak, R. Tarsang, S. Jungsuttiwong, T. Keawin, T. Sudyoadsuk, and V. Promarak, Pyrene-functionalized carbazole derivatives as non-doped blue emitters for highly efficient blue organic light-emitting diodes. Journal of Materials Chemistry C, 2013. 1(32): p. 4916-4924.
54. F. Huang, H.B. Wu, and Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010. 39(7): p. 2500-2521.
55. Y.J. Cho, K.S. Yook, and J.Y. Lee, A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Adv Mater, 2014. 26(24): p. 4050-5.
56. C. Tang, F. Liu, Y.J. Xia, L.H. Xie, A. Wei, S.B. Li, Q.L. Fan, and W. Huang, Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes. Journal of Materials Chemistry, 2006. 16(41): p. 4074-4080.
57. N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, and S.I. Seok, Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. Journal of the American Chemical Society, 2013. 135(51): p. 19087-19090.
58. X. Zhao and X. Zhan, Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev, 2011. 40(7): p. 3728-43.
59. R.R. Gagne, C.A. Koval, and G.C. Lisensky, Ferrocene as an Internal Standard for Electrochemical Measurements. Inorganic Chemistry, 1980. 19(9): p. 2854-2855.
60. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
61. 高豐生,陳大潘,陳惠民, 利用原子力顯微鏡技術來研究蛋白質固定在晶片上的方向性. 國家奈米元件實驗室奈米通訊, 2010. 17(3): p. 2-6.
62. B. Stegemann, H. Backhaus, H. Kloß, and E. Santner, Spherical AFM probes for adhesion force measurements on metal single crystals. Modern Research and Educational Topics in Microscopy, Series, 2007. 3: p. 820-827.
63. 朱柏豪, 表面輪廓儀的用途. 國家奈米元件實驗室奈米通訊, 2015. 22(1): p. 31-33.
64. L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Materials Science and Engineering: B, 2010. 174(1): p. 18-30.
65. Y.L. Qiao, J. Zhang, W. Xu, and D.B. Zhu, Novel 2,7-substituted pyrene derivatives: syntheses, solid-state structures, and properties. Tetrahedron, 2011. 67(19): p. 3395-3405.
66. J.M. Rathfon, Z.M. AL‐Badri, R. Shunmugam, S.M. Berry, S. Pabba, R.S. Keynton, R.W. Cohn, and G.N. Tew, Fluorimetric Nerve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub‐Micrometer Fibers. Advanced Functional Materials, 2009. 19(5): p. 689-695.
67. C.J. Ou, Z.F. Lei, M.L. Sun, L.H. Xie, Y. Qian, X.W. Zhang, and W. Huang, Dumbbell effects of solution-processed pyrene-based organic semiconductors on electronic structure, morphology and electroluminescence. Synthetic Metals, 2015. 200: p. 135-142.
68. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992. 258(5087): p. 1474-6.
69. W.H. Hsieh, C.F. Wan, D.J. Liao, and A.T. Wu, A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Letters, 2012. 53(44): p. 5848-5851.
70. W.Z. Yuan, P. Lu, S. Chen, J.W. Lam, Z. Wang, Y. Liu, H.S. Kwok, Y. Ma, and B.Z. Tang, Changing the Behavior of Chromophores from Aggregation‐Caused Quenching to Aggregation‐Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced materials, 2010. 22(19): p. 2159-2163.
71. B.C. Wang, J.C. Chang, H.C. Tso, H.F. Hsu, and C.Y. Cheng, Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives. Journal of Molecular Structure-Theochem, 2003. 629(1): p. 11-20.
72. T. Iwamoto, E. Kayahara, N. Yasuda, T. Suzuki, and S. Yamago, Synthesis, Characterization, and Properties of [4] Cyclo‐2, 7‐pyrenylene: Effects of Cyclic Structure on the Electronic Properties of Pyrene Oligomers. Angewandte Chemie, 2014. 126(25): p. 6548-6552.
73. S.E. Lee, H.W. Lee, J.W. Lee, K.M. Hwang, S.N. Park, S.S. Yoon, and Y.K. Kim, Optimization of hybrid blue organic light-emitting diodes based on singlet and triplet exciton diffusion length. Japanese Journal of Applied Physics, 2015. 54(6): p. 06FG09.
74. C.T. Liao, H.F. Chen, H.C. Su, and K.T. Wong, Tailoring balance of carrier mobilities in solid-state light-emitting electrochemical cells by doping a carrier trapper to enhance device efficiencies. Journal of Materials Chemistry, 2011. 21(44): p. 17855-17862.