簡易檢索 / 詳目顯示

研究生: 劉俊輝
Liou, Jyun-Huei
論文名稱: 含希夫鹼基團之芘衍生物:合成、鑑定及在有機發光二極體之應用
Schiff Base-Modified Pyrene Derivative:Synthesis, Characterization and Application in Organic Light-Emitting Diodes
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 有機發光二極體電洞緩衝希夫鹼濕式製程
外文關鍵詞: OLEDs, hole buffer, pyrene, Schiff base, solution process
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體由於擁有了許多的優點,已被譽為是下一世代的平面顯示器,而有機發光二極體的發光機制為電激發光,即為電子電洞分別由陰陽極注入,且經由載子傳輸層傳輸,最後在發光層再結合來產生光。因此載子的注入跟傳輸速率會影響元件的發光效率,然而在大多數有機材料中電洞的傳輸速率皆比電子來的快,傳輸到發光層的電洞遠多於電子,導致載子的再結合比率不佳,進而影響到元件的效率,因此降低電洞的傳輸速率則是讓有機發光二極體元件效率上升的有效方法之一。
    本研究以Suzuki coupling合成出一新型的電洞緩衝材料(PSB),此PSB是以芘(pyrene)作為本體且含有兩個希夫鹼(Schiff base)基團,藉由此親電子性的基團來改變芘的載子傳導特性,進而降低電洞的傳輸速率。而PSB具有高的熱裂解溫度(300 oC),且由於結構阻礙堆疊所以沒有觀察到融解溫度(Tm)與結晶溫度(Tc),並能以旋轉塗佈製程成膜及製作發光元件。以循環伏安法量測計算出PSB的LUMO能階與HOMO能階分別為-2.55 eV與-6.33 eV。製備以PSB當電洞緩衝層的發光元件結構為ITO/PEDOT:PSS/PSB/SY/LiF/Al,其最大亮度為26,439 cd/m2,最大電流效率為7.03 cd/A,遠高於無電洞緩衝層之元件的9,802 cd/m2及2.43 cd/A,且相較於傳統常用的電洞阻擋材料BCP所製成的元件(ITO/PEDOT:PSS/SY/BCP/LiF/Al),無論是效率或亮度都有明顯的提升。這些結果都顯示此PSB為一個具有實用潛力之新穎電洞緩衝材料。

    In recent years, organic light-emitting diodes (OLEDs) have been famous for its high efficiency, self-emissive ability, flexible property and wide view angle in flat panel displays and lighting sources. For increasing device efficiency, balance of hole and electron mobility within OLED is very importance. In this study, we successfully synthesized a new hole buffer material PSB which composed of pyrene, Schiff base and trihydroxy tert-butyl groups by Suzuki-coupling reaction. This material showed high thermal stability (Td = 300 oC) because of containing rigid groups. Moreover, PSB wasn’t observed Tm and Tc. In cyclic voltammetry measurement, HOMO and LUMO levels were -6.33 and -2.55 eV, respectively. In addition, homogeneous films were obtained by spin-coating. Multilayer OLED devices were fabricated by using PSB as hole buffer layer [ITO/PEDOT:PSS/PSB/SY/LiF/Al]. The best performance of PSB device (maximum luminance: 26,439 cd/m2, maximum current efficiency: 7.03 cd/A) was much better than the device without PSB [ITO/PEDOT:PSS/SY/LiF/Al] (9,802 cd/m2, 2.43 cd/A). The best PSB device was also better than the device with hole blocking material BCP [ITO/PEDOT:PSS/SY/BCP/LiF/Al] (15,496 cd/m2, 5.56 cd/A). These results indicated that PSB was an efficient hole buffer material.

    目錄 摘要 I 致謝 VIII 目錄 X 圖目錄 XII 表目錄 XVI 流程目錄 XVI 第一章 緒論 1 1-1.前言 1 1-2.基礎理論 4 1-2-1.有機材料的共軛導電特性[6, 7] 4 1-2-2.螢光理論 5 1-2-3.影響螢光強度之重要因素 8 1-2-4.分子內激發態(intrachain excitons)與分子間激發態(interchain excitons)[10, 11] 10 第二章 文獻回顧 12 2-1.元件發光原理 12 2-1-1.光激發光 12 2-1-2.電激發光 12 2-2.元件的電流限制 14 2-2-1.注入限制電流(injection-limited current) 14 2-2-2.空間限制電流(SCL current)[15] 15 2-3.有激發光二極體之效率 16 2-3-1.影響有機發光二極體效率之因素[1] 16 2-3-2.促進電子和電洞再結合之方法 18 2-4.元件結構 19 2-4-1.單層元件[17, 18] 19 2-4-2.多層元件[1] 20 2-5.有機電激材料之分類 21 2-5-1.共軛高分子發光材料 22 2-5-2.電子注入材料(EIM) 23 2-5-2.電子傳輸/電洞阻擋材料(ETM/HBM) 25 2-5-3.電洞注入/傳輸材料(HIM/HTM) 26 2-5-4.電洞緩衝材料(HBuM) 27 2-6.濕式製程 29 2-7.研究動機 31 第三章 實驗內容 32 3-1.實驗裝置與設備 32 3-2.鑑定儀器 34 3-3.物性與光電測量儀器 35 3-4.實驗藥品與材料 43 3-5.反應步驟與結果 45 3-6.元件製作與測量 47 第四章 結果與討論 52 4-1.分子之合成與鑑定 52 4-1-1.核磁共振光譜(NMR) 52 4-1-2.元素分析儀(EA) 54 4-2.分子之熱性質分析 55 4-2-1.熱重分析(TGA) 55 4-2-2.微差式掃描熱卡計分析(DSC) 56 4-3.光學性質分析 58 4-3-1. UV-vis吸收光譜與PL發光光譜 58 4-4.電化學性質分析 60 4-5.有機材料成模性質分析 63 4-6.有機發光二極體元件分析 66 4-6-1.元件結構與能階 66 4-6-2.元件電激發光性質 68 4-6-3. Hole-only元件(HOD) 72 4-6-4. Electron-only元件(EOD) 74 4-6-5.元件再結合比例與區域之探討 76 第五章 結論 77 參考資料 79 圖目錄 Fig. 1-2-1絕緣體、半導體及導體共價帶與傳導帶的能階分布 5 Fig. 1-2-2各能態中電子自旋情形示意圖 6 Fig. 1-2-3 Franck-Condon原理[9] 7 Fig. 1-2-4分子能階示意圖[8] 7 Fig. 1-2-5 (a) Orbital of excimer; (b) Energy diagram of exciton and excimer.[10] 11 Fig. 1-2-6 Potential energy surfaces of interchain excitons.[11] 11 Fig. 2-1-1光激發光示意圖 12 Fig. 2-1-2電機發光示意圖 13 Fig. 2-2-1 (a) Richardson-Schottky熱注入模式,(b) Fowler-Nordheim穿隧模式[13, 14] 14 Fig. 2-2-2空間限制電流示意圖 15 Fig. 2-3-1發光機制與元件效率之示意圖 17 Fig. 2-4-1單層元件結構示意圖 19 Fig. 2-4-2多層元件結構示意圖 20 Fig. 2-5-1 OLED發光材料的分類 21 Fig. 2-5-2常見的共軛高分子發光材料結構[27] 22 Fig. 2-5-3 Alq3、Al及LiF的反應式與自由能的變化 25 Fig. 2-5-4常用的電子傳輸材料[44] 26 Fig. 2-5-5 PEDOT:PSS的合成路徑與結構示意圖 27 Fig. 2-5-6 (a) CuPc之結構,(b)以CuPc做為電洞緩衝層之電流-電壓圖[48] 28 Fig. 2-5-7 (a) BCP, (b) TPBi, 及(c) TmPyPB之化學結構 28 Fig. 2-6-1 (a)濕式製程的方法,(b)濕式製程的多層元件結構示意圖[55] 30 Fig. 3-3-1 Three-electrode cell of cyclic voltammetry. 37 Fig. 3-3-2 Schematic representation of (a) p-doping, (b) n-doping process in cyclic voltammetry. 38 Fig. 3-3-3 (a) The cyclic voltammogram of ferrocene; (b) The relative potential between the ferrocene and polymer. 38 Fig. 3-3-4 AFM探針與待測樣品的作用情形[60] 39 Fig. 3-3-5 (a) AFM偵測方法示意圖,(b) AFM儀器簡圖[60] 40 Fig. 3-3-6 AFM force distance curve plots the deflection of the force-sensing cantilever during tip approach and retraction.[62] 41 Fig. 3-3-7表面輪廓儀示意圖[63] 42 Fig. 3-6-1 Diagram illustration of the evaporation system. 51 Fig. 3-6-2 Structure of the device. 51 Fig. 4-1-1 1H-NMR spectrum of compound 1. 53 Fig. 4-1-2 1H-NMR spectrum of compound PSB. 53 Fig. 4-2-1 Thermogravimetric curves of PSB at heating rate of 10 oC/min. 56 Fig. 4-2-2 Differential scanning calorimetric curves of PSB at a heating rate of 10 oC/min. 57 Fig. 4-3-1 Normalized UV/vis absorption and photoluminescence spectra of PSB in DMF solution and at film state. 59 Fig. 4-4-1 Cyclic voltammogram of PSB coated on carbon electrode, measured in 0.1 M (n-Bu)4NClO4; scan rate: 100 mV/s. 61 Fig. 4-4-2 (a) HOMO and (b) LUMO distributions of PSB were calculated by Gaussian 09 software. (DFT-B3LYP/6-311G(d) level) 62 Fig. 4-5-1 AFM roughness image of (a) PEDOT:PSS film on top of ITO and PSB on top of PEDOT:PSS film with different concentration. (b) 5 mg/mL, (c) 10 mg/mL, (d) 15 mg/mL, (e) 20 mg/mL. 64 Fig. 4-5-2 AFM adhesion force image of (a) PEDOT:PSS film on top of ITO and PSB on top of PEDOT:PSS film with different concentration. (b) 5 mg/mL, (c) 10 mg/mL, (d) 15 mg/mL, (e) 20 mg/mL. 65 Fig. 4-6-1 (a) The structure of SY; energy level diagrams of EL devices: (b) PSB as hole-buffer layer and (c) BCP as hole-blocking layer. 67 Fig. 4-6-2 Luminance versus voltage characteristics of EL devices. Device structure: ITO/PEDOT:PSS/PSB(x nm)/SY/(BCP)/LiF/Al. 70 Fig. 4-6-3 Current density versus voltage characteristics of EL devices. Device structure: ITO/PEDOT:PSS/PSB(x nm)/SY/(BCP)/LiF/Al. 70 Fig. 4-6-4 Current efficiency versus current density characteristics of EL devices. Device structure: ITO/PEDOT:PSS/PSB(x nm)/SY/(BCP)/LiF/Al. 71 Fig. 4-6-5 Luminous power efficiency versus current density characteristics of EL devices. 71 Device structure: ITO/PEDOT:PSS/PSB(x nm)/SY/(BCP)/LiF/Al. 71 Fig. 4-6-6 Current density versus voltage characteristics of the hole-only EL devices. Device structure: ITO/PEDOT:PSS/PSB(x nm)/SY/(BCP)/LiF/Au. 73 Fig. 4-6-7 Current density versus voltage characteristics of electron-only EL devices. Device structure: ITO/ZnO/PSB(x nm)/SY/(BCP)/LiF/Al. 75 Fig. 4-6-8 (a)電洞阻擋元件,(b)電洞緩衝元件的再結合情形示意圖 76   表目錄 Table 1-1-1 Property comparison of displays[1]. 2 Table 1-1-2 Comparison between OLED and PLED[5]. 3 Table 1-2各種取代基對螢光波長與強度的影響 9 Table 2-5週期表上各金屬之功函數 23 Table 4-1 Synthesis result of compound 1 and PSB. 54 Table 4-2 Thermal properties of PSB. 57 Table 4-3 Optical properties of PSB. 59 Table 4-4 Electrochemical potentials of PSB and pyrene. 62 Table 4-5 Root mean square roughness of PSB films on top of PEDOT:PSS. 64 Table 4-6 Electroluminescent properties of the devices. 69 流程目錄 Scheme 1 The synthesis route of PSB. 45

    參考資料
    1. 陳金鑫,黃孝文, OLED 夢幻顯示器. 台灣:五南圖書出版股份有限公司, 2007.
    2. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
    3. C.W. Tang and S.A. Vanslyke, Organic Electroluminescent Diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
    4. J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns, and A. Holmes, Light-emitting diodes based on conjugated polymers. nature, 1990. 347(6293): p. 539-541.
    5. 段啟聖, 化工資訊雜誌與商情, 民國94年. 第26期: p. 40.
    6. H. Shirakawa, E.J. Louis, A.G. Macdiarmid, C.K. Chiang, and A.J. Heeger, Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene, (Ch)X. Journal of the Chemical Society-Chemical Communications, 1977(16): p. 578-580.
    7. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. Macdiarmid, Electrical-Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
    8. B. Valeur and M.N. Berberan-Santos, Molecular fluorescence: principles and applications. 2012: John Wiley & Sons.
    9. M. Lax, The Franck‐Condon Principle and Its Application to Crystals. The Journal of Chemical Physics, 1952. 20(11): p. 1752-1760.
    10. W.T. Yip and D.H. Levy, Excimer/exciplex formation in van der Waals dimers of aromatic molecules. Journal of Physical Chemistry, 1996. 100(28): p. 11539-11545.
    11. S. Beck, A. Hallam, and A.M. North, Excimer and Charge-Transfer Complex Trapping of Excitons in Carbazole Containing Polymers. Polymer, 1979. 20(10): p. 1177-1179.
    12. M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
    13. M. Lenzlinger and E. Snow, Fowler‐Nordheim Tunneling into Thermally Grown SiO2. Journal of Applied physics, 1969. 40(1): p. 278-283.
    14. J.G. Simmons, Richardson-Schottky Effect in Solids. Physical Review Letters, 1965. 15(25): p. 967-&.
    15. A. Rose, Space-Charge-Limited Currents in Solids. Physical Review, 1955. 97(6): p. 1538-1544.
    16. Y. Yamashita, Organic semiconductors for organic field-effect transistors. Science and technology of advanced materials, 2016.
    17. G.G. Malliaras, J.R. Salem, P.J. Brock, and C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Physical Review B, 1998. 58(20): p. 13411-13414.
    18. C.C. Wu, J.C. Sturm, R.A. Register, J. Tian, E.P. Dana, and M.E. Thompson, Efficient organic electroluminescent devices using single-layer doped polymer thin films with bipolar carrier transport abilities. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1269-1281.
    19. J.J. Shiang and A.R. Duggal, Application of radiative transport theory to light extraction from organic light emitting diodes. Journal of Applied Physics, 2004. 95(5): p. 2880-2888.
    20. S. Möller and S. Forrest, Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002. 91(5): p. 3324-3327.
    21. G. Gu, D.Z. Garbuzov, P.E. Burrows, S. Venkatesh, S.R. Forrest, and M.E. Thompson, High-external-quantum-efficiency organic light-emitting devices. Opt Lett, 1997. 22(6): p. 396-8.
    22. J.L. Segura, The chemistry of electroluminescent organic materials. Acta Polymerica, 1998. 49(7): p. 319-344.
    23. K.M. Coakley and M.D. McGehee, Conjugated polymer photovoltaic cells. Chemistry of Materials, 2004. 16(23): p. 4533-4542.
    24. B.S. Ong, Y. Wu, P. Liu, and S. Gardner, High-performance semiconducting polythiophenes for organic thin-film transistors. J Am Chem Soc, 2004. 126(11): p. 3378-9.
    25. J. Roncali, Conjugated Poly(Thiophenes) - Synthesis, Functionalization, and Applications. Chemical Reviews, 1992. 92(4): p. 711-738.
    26. M.C. Choi, Y. Kim, and C.S. Ha, Polymers for flexible displays: From material selection to device applications. Progress in Polymer Science, 2008. 33(6): p. 581-630.
    27. I.V. AKIN, A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY. 2012.
    28. T. Wakimoto, Y. Fukuda, K. Nagayama, A. Yokoi, H. Nakada, and M. Tsuchida, Organic EL cells using alkaline metal compounds as electron injection materials. Ieee Transactions on Electron Devices, 1997. 44(8): p. 1245-1248.
    29. C. Ganzorig and M. Fujihira. Balanced Charge Injection and Singlet Exciton Quenching in Bilayer Organic Electroluminescent Devices. in MRS Proceedings. 2003. Cambridge Univ Press.
    30. J. Huang, Z. Xu, and Y. Yang, Low‐Work‐Function Surface Formed by Solution‐Processed and Thermally Deposited Nanoscale Layers of Cesium Carbonate. Advanced Functional Materials, 2007. 17(12): p. 1966-1973.
    31. J.S. Chen, C.S. Shi, Q. Fu, F.C. Zhao, Y. Hu, Y.L. Feng, and D.G. Ma, Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs. Journal of Materials Chemistry, 2012. 22(11): p. 5164-5170.
    32. L.S. Hung, C.W. Tang, M.G. Mason, P. Raychaudhuri, and J. Madathil, Application of an ultrathin LiF/Al bilayer in organic surface-emitting diodes. Applied Physics Letters, 2001. 78(4): p. 544-546.
    33. G. Jabbour, B. Kippelen, N. Armstrong, and N. Peyghambarian, Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices. Applied Physics Letters, 1998. 73(9): p. 1185-1187.
    34. Z.Y. Sun, X.M. Ding, B.F. Ding, X.D. Gao, Y.M. Hu, X.Q. Chen, Y. He, and X.Y. Hou, Buffer-enhanced electron injection in organic light-emitting devices with copper cathode. Organic Electronics, 2013. 14(2): p. 511-515.
    35. L.S. Hung, C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
    36. L. Hung, R. Zhang, P. He, and G. Mason, Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. Journal of Physics D: Applied Physics, 2001. 35(2): p. 103.
    37. T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Applied Physics Letters, 1998. 73(19): p. 2763-2765.
    38. R. Schlaf, B.A. Parkinson, P.A. Lee, K.W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N.R. Armstrong, Photoemission spectroscopy of LiF coated Al and Pt electrodes. Journal of Applied Physics, 1998. 84(12): p. 6729-6736.
    39. W.D. Xu, W.Y. Lai, Q. Hu, X.Y. Teng, X.W. Zhang, and W. Huang, A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics. Polymer Chemistry, 2014. 5(8): p. 2942-2950.
    40. F. Uckert, Y.H. Tak, K. Müllen, and H. Bässler, 2, 7‐Poly (9‐fluorenone): A Trap‐Free Electron‐Injection Material with a High Charge Carrier Mobility for Use in Light‐Emitting Diodes. Advanced Materials, 2000. 12(12): p. 905-908.
    41. A.P. Kulkarni, C.J. Tonzola, A. Babel, and S.A. Jenekhe, Electron transport materials for organic light-emitting diodes. Chemistry of Materials, 2004. 16(23): p. 4556-4573.
    42. S.A. Jenekhe and S.J. Yi, Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters, 2000. 77(17): p. 2635-2637.
    43. D. Chen, L. Han, W.P. Chen, Z.Y. Zhang, S.T. Zhang, B. Yang, Z.L. Zhang, J.Y. Zhang, and Y. Wang, Bis(2-(benzo[d]thiazol-2-yl)-5-fluorophenolate)beryllium: a high-performance electron transport material for phosphorescent organic light-emitting devices. Rsc Advances, 2016. 6(6): p. 5008-5015.
    44. K.-i. Nakayama, J. Kido, M. Yokoyama, and Y.-J. Pu, Organic Field-Effect Transistors Using Hetero-Layered Structure with OLED Materials. 2011: INTECH Open Access Publisher.
    45. S. Jönsson, J. Birgerson, X. Crispin, G. Greczynski, W. Osikowicz, A.D. Van Der Gon, W.R. Salaneck, and M. Fahlman, The effects of solvents on the morphology and sheet resistance in poly (3, 4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films. Synthetic Metals, 2003. 139(1): p. 1-10.
    46. D. Grozea, A. Turak, Y. Yuan, S. Han, Z.H. Lu, and W.Y. Kim, Enhanced thermal stability in organic light-emitting diodes through nanocomposite buffer layers at the anode/organic interface. Journal of Applied Physics, 2007. 101(3): p. 3522.
    47. S.M. Tadayyon, H.M. Grandin, K. Griffiths, P.R. Norton, H. Aziz, and Z.D. Popovic, CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
    48. E.W. Forsythe, M.A. Abkowitz, and Y.L. Gao, Tuning the carrier injection efficiency for organic light-emitting diodes. Journal of Physical Chemistry B, 2000. 104(16): p. 3948-3952.
    49. V.I. Adamovich, S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W. D'Andrade, and S.R. Forrest, New charge-carrier blocking materials for high efficiency OLEDs. Organic Electronics, 2003. 4(2-3): p. 77-87.
    50. W.C. Lin, H.W. Lin, E. Mondal, and K.T. Wong, Efficient solution-processed green and white phosphorescence organic light-emitting diodes based on bipolar host materials. Organic Electronics, 2015. 17: p. 1-8.
    51. H. Gao, C. Qin, H. Zhang, S. Wu, Z.M. Su, and Y. Wang, Theoretical characterization of a typical hole/exciton-blocking material bathocuproine and its analogues. J Phys Chem A, 2008. 112(38): p. 9097-103.
    52. T.W. Lee, T. Noh, H.W. Shin, O. Kwon, J.J. Park, B.K. Choi, M.S. Kim, D.W. Shin, and Y.R. Kim, Characteristics of Solution‐Processed Small‐Molecule Organic Films and Light‐Emitting Diodes Compared with their Vacuum‐Deposited Counterparts. Advanced Functional Materials, 2009. 19(10): p. 1625-1630.
    53. P. Kotchapradist, N. Prachumrak, R. Tarsang, S. Jungsuttiwong, T. Keawin, T. Sudyoadsuk, and V. Promarak, Pyrene-functionalized carbazole derivatives as non-doped blue emitters for highly efficient blue organic light-emitting diodes. Journal of Materials Chemistry C, 2013. 1(32): p. 4916-4924.
    54. F. Huang, H.B. Wu, and Y. Cao, Water/alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chemical Society Reviews, 2010. 39(7): p. 2500-2521.
    55. Y.J. Cho, K.S. Yook, and J.Y. Lee, A universal host material for high external quantum efficiency close to 25% and long lifetime in green fluorescent and phosphorescent OLEDs. Adv Mater, 2014. 26(24): p. 4050-5.
    56. C. Tang, F. Liu, Y.J. Xia, L.H. Xie, A. Wei, S.B. Li, Q.L. Fan, and W. Huang, Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes. Journal of Materials Chemistry, 2006. 16(41): p. 4074-4080.
    57. N.J. Jeon, J. Lee, J.H. Noh, M.K. Nazeeruddin, M. Grätzel, and S.I. Seok, Efficient inorganic–organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. Journal of the American Chemical Society, 2013. 135(51): p. 19087-19090.
    58. X. Zhao and X. Zhan, Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev, 2011. 40(7): p. 3728-43.
    59. R.R. Gagne, C.A. Koval, and G.C. Lisensky, Ferrocene as an Internal Standard for Electrochemical Measurements. Inorganic Chemistry, 1980. 19(9): p. 2854-2855.
    60. 黃英碩, 掃描探針顯微術的原理及應用. 科儀新知, 2005(144): p. 7-17.
    61. 高豐生,陳大潘,陳惠民, 利用原子力顯微鏡技術來研究蛋白質固定在晶片上的方向性. 國家奈米元件實驗室奈米通訊, 2010. 17(3): p. 2-6.
    62. B. Stegemann, H. Backhaus, H. Kloß, and E. Santner, Spherical AFM probes for adhesion force measurements on metal single crystals. Modern Research and Educational Topics in Microscopy, Series, 2007. 3: p. 820-827.
    63. 朱柏豪, 表面輪廓儀的用途. 國家奈米元件實驗室奈米通訊, 2015. 22(1): p. 31-33.
    64. L. Znaidi, Sol–gel-deposited ZnO thin films: a review. Materials Science and Engineering: B, 2010. 174(1): p. 18-30.
    65. Y.L. Qiao, J. Zhang, W. Xu, and D.B. Zhu, Novel 2,7-substituted pyrene derivatives: syntheses, solid-state structures, and properties. Tetrahedron, 2011. 67(19): p. 3395-3405.
    66. J.M. Rathfon, Z.M. AL‐Badri, R. Shunmugam, S.M. Berry, S. Pabba, R.S. Keynton, R.W. Cohn, and G.N. Tew, Fluorimetric Nerve Gas Sensing Based on Pyrene Imines Incorporated into Films and Sub‐Micrometer Fibers. Advanced Functional Materials, 2009. 19(5): p. 689-695.
    67. C.J. Ou, Z.F. Lei, M.L. Sun, L.H. Xie, Y. Qian, X.W. Zhang, and W. Huang, Dumbbell effects of solution-processed pyrene-based organic semiconductors on electronic structure, morphology and electroluminescence. Synthetic Metals, 2015. 200: p. 135-142.
    68. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992. 258(5087): p. 1474-6.
    69. W.H. Hsieh, C.F. Wan, D.J. Liao, and A.T. Wu, A turn-on Schiff base fluorescence sensor for zinc ion. Tetrahedron Letters, 2012. 53(44): p. 5848-5851.
    70. W.Z. Yuan, P. Lu, S. Chen, J.W. Lam, Z. Wang, Y. Liu, H.S. Kwok, Y. Ma, and B.Z. Tang, Changing the Behavior of Chromophores from Aggregation‐Caused Quenching to Aggregation‐Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced materials, 2010. 22(19): p. 2159-2163.
    71. B.C. Wang, J.C. Chang, H.C. Tso, H.F. Hsu, and C.Y. Cheng, Theoretical investigation the electroluminescence characteristics of pyrene and its derivatives. Journal of Molecular Structure-Theochem, 2003. 629(1): p. 11-20.
    72. T. Iwamoto, E. Kayahara, N. Yasuda, T. Suzuki, and S. Yamago, Synthesis, Characterization, and Properties of [4] Cyclo‐2, 7‐pyrenylene: Effects of Cyclic Structure on the Electronic Properties of Pyrene Oligomers. Angewandte Chemie, 2014. 126(25): p. 6548-6552.
    73. S.E. Lee, H.W. Lee, J.W. Lee, K.M. Hwang, S.N. Park, S.S. Yoon, and Y.K. Kim, Optimization of hybrid blue organic light-emitting diodes based on singlet and triplet exciton diffusion length. Japanese Journal of Applied Physics, 2015. 54(6): p. 06FG09.
    74. C.T. Liao, H.F. Chen, H.C. Su, and K.T. Wong, Tailoring balance of carrier mobilities in solid-state light-emitting electrochemical cells by doping a carrier trapper to enhance device efficiencies. Journal of Materials Chemistry, 2011. 21(44): p. 17855-17862.

    下載圖示 校內:2017-08-01公開
    校外:2017-08-01公開
    QR CODE