| 研究生: |
張高僑 Chang, Kao-chiao |
|---|---|
| 論文名稱: |
鈣系爐渣封存二氧化碳行為之研究 Carbon dioxide capture with calcium-based ashes and slags |
| 指導教授: |
張祖恩
Chang, Juu-en |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 矽酸二鈣 、氧化鈣 、脫硫渣 、底渣 、碳酸化 、轉爐石 |
| 外文關鍵詞: | Basic oxygen furnace slag, Bottom ash, Dicalcium silicate, Calcium oxide, Desulfur slag, Carbonation |
| 相關次數: | 點閱:140 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
爐渣中之不穩定鈣系物質應具有吸附二氧化碳之潛力,本研究以固相及液相碳酸化程序分別討論底渣、轉爐石及脫硫渣成分中,液固比、反應溫度、反應氣氛和反應時間等差異所產生的影響,透過計算底渣及煉鋼爐渣中總鈣轉換為碳酸鈣之比率,表示碳酸化之程度,最後利用動力及反應模式對固相及液相碳酸化進行分析。
固相碳酸化程序以氧化鈣為主要反應物種,隨著溫度上升而使鈣轉化率上升,而添加水氣具有增加反應速率及提升鈣轉化率之效果,於溫度600℃、水氣含量30%、二氧化碳分壓10%下反應30分鐘,底渣、轉爐石及脫硫渣鈣轉化率分別達3、7及22%,其影響因子主要為溫度及水氣。液相碳酸化程序則氧化鈣、矽酸鈣及其他鈣化合物皆具有碳酸化能力,於反應溫度100℃、底渣液固比為0.5、轉爐石液固比為0.8、脫硫渣液固比為0.8、二氧化碳分壓10%下反應30分鐘鈣轉化率分別可達19、12及42%。
固相碳酸化透過模式模擬說明轉爐石及脫硫渣符合表面覆蓋模式,且水氣含量增加可降底碳酸化反應之活化能,使反應速率提升。液相碳酸化透過模式模擬,說明底渣、轉爐石及脫硫渣皆符合一階之化學反應模式。
Based on previous studies, the calcium-based ashes and slags have the potential to absorb CO2. Different compositions of various types of ashes and slags would have different effect on the carbonation. This research mainly discusses the effect of different components of MSWI bottom ash, basic oxygen furnace slag and desulfur slag on direct and aqueous carbonation process. This is achieved by determination of calcite conversion ratio of bottom ash, basic oxygen furnace slag and desulfur slag, followed by analysis of kinetic and reaction model of direct and aqueous carbonation process.
The main reactant of direct carbonation process is calcium oxide, the calcite conversion ratio increases as temperature rises, and addition of water vapor could increase the reaction rate and calcite conversion ratio. Moreover, under the condition with temperature at 600℃, water partial pressure of 30%, carbon dioxide partial pressure of 10% and reaction time of 30 minutes, the calcite conversion ratio of bottom ash, basic oxygen furnace slag and desulfur slag is 3, 7 and 22%, respectively. On the other hand, calcium oxide, silicate calcium and other calcium compounds possess carbonation ability in the aqueous carbonation process. Moreover, when bottom ash, basic oxygen furnace slag and desulfur slag each with respective liquid/solid ratio of 0.5, 0.8 and 0.8 carried out aqueous carbonation for 30 minutes with carbon dioxide partial pressure of 10% at 100℃, the calcite conversion ratio for bottom ash, basic oxygen furnace slag and desulfur slag is 19, 12 and 42%, respectively.
The simulation of direct carbonation demonstrated that basic oxygen furnace slag and desulfur slag fit the surface coverage model, and increase the level of vapor lowered the activation energy needed for carbonation thus increased the rate of reaction process. Furthermore, the results from simulation of aqueous carbonation showed that bottom ash, basic oxygen furnace slag and desulfur slag followed the first order chemical reaction model.
Arvelakis, S.; Frandsen, F. J., Study on analysis and characterization methods for ash material from incineration plants. Fuel, 2005, 84, (14-15), 1725-1738.
Berger, R. L.; Klemm, W. A., Accelerated curing of cementitious systems by carbon dioxide Part II. Hydraulic calcium silicates and aluminates. Cement and Concrete Research, 1972, 2, 647-652.
Beruto, D. T.; Botter, R., Liquid-like H2O adsorption layers to catalyze the Ca(OH)2/CO2 solid-gas reaction and to form a non-protective solid product layer at 20 ℃. Journal of the European Ceramic Society, 2000, 20, (4), 497-503.
Calleja, J. Durability, Proc Seventh International Conference on the Chemistry of Cement , 1980, VII–2, 1-43.
David, R.; Lide, E., CRC handbook of chemistry and physics. 2007, Taylor and Francis, BocaRaton, FL.
Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F.; Vazquez, T., Stable Ca3SiO5 solid solution containing manganese and phosphorus. Cement and Concrete Research, 1997, 27, (8), 1203-1212.
Fattuhi, N. I., Concrete carbonation as influenced by curing regime. Cement and Concrete Research, 1988, 18, (3), 426-430.
Fernandez Bertos, M.; Simons, S. J. R.; Hills, C. D.; Carey, P. J., A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, 2004, 112, (3), 193-205.
Goodbrake, C. J.; Young, J. F.; Berger, R. L., Reaction of hydraulic calcium silicates with carbon dioxide and water. Journal of the American Ceramic Society, 1979, 62, (9-10), 488-491.
Goto, S.; Suenaga, K.; Kado, T.; Fukuhara, M., Calcium silicate carbonation products. Journal of the American Ceramic Society, 1995, 78, (11), 2867-2872.
Huijgen, W. J. J.; Witkamp, G.-J.; Comans, R. N. J., Mineral CO2 sequestration by steel slag carbonation. Environmental Science and Technology, 2005, 39, (24), 9676-9682.
Huijgen, W. J. J.; Witkamp, G.-J.; Comans, R. N. J., Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process. Chemical Engineering Science, 2006, 61, (13), 4242-4251.
Iizuka, A.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y., Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Industrial and Engineering Chemistry Research, 2004, 43, (24), 7880-7887.
Jia, L.; Anthony, E. J., Pacification of FBC ash in a pressurized TGA. Fuel, 2000, 79, (9), 1109-1114.
Jing, Z.; Jin, F.; Yamasaki, N.; Ishida, E. H., Hydrothermal synthesis of a novel tobermorite-based porous material from municipal incineration bottom ash. Industrial and Engineering Chemistry Research, 2007, 46, (8), 2657-2660.
Lackner, K. S.; Wendt, C. H.; Butt, D. P.; Joyce, E. L., Jr.; Sharp, D. H., Carbon dioxide disposal in carbonate minerals. Energy (Oxford), 1995, 20, (11), 1153-1170.
Lee, D. K., An apparent kinetic model for the carbonation of calcium oxide by carbon dioxide. Chemical Engineering Journal, 2004, 100, (1-3), 71-77.
Lin, K. L.; Chang, C. T., Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. Journal of Hazardous Materials, 2006, 135, (1-3), 296-302.
Liu, L.; Ha, J.; Hashida, T.; Teramura, S., Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste. Journal of Materials Science Letters, 2001, 20, (19), 1791-1794.
Maries, A., The activation of Portland cement by carbon dioxide. Proceeding of Conference in Cement and Concrete Science, 1985, Oxford, UK.
Matsuya, S.; Lin, X.; Udoh, K.-I.; Nakagawa, M.; Shimogoryo, R.; Terada, Y.; Ishikawa, K., Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact. Journal of Materials Science: Materials in Medicine, 2007, 18, (7), 1361-1367.
Mess, D.; Sarofim, A. F.; Longwell, J. P., Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energy and Fuels, 1999, 13, (5), 999-1005.
Muller, U.; Rubner, K., The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cement and Concrete Research, 2006, 36, (8), 1434-1443.
Nikulshina, V.; Galvez, M. E.; Steinfeld, A., Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle. Chemical Engineering Journal, 2007, 129, (1-3), 75-83.
Ore, S.; Todorovic, J.; Ecke, H.; Grennberg, K.; Lidelow, S.; Lagerkvist, A., Toxicity of leachate from bottom ash in a road construction. Waste Management, 2007, 27, (11), 1626-1637.
Papadakis, V. G.; Vayenas, C. G.; Fardis, M. N., Reaction engineering approach to the problem of concrete carbonation. AIChE Journal, 1989, 35, (10), 1639-1650.
Qian, G.; Song, Y.; Zhang, C.; Xia, Y.; Zhang, H.; Chui, P., Diopside-based glass-ceramics from MSW fly ash and bottom ash. Waste Management, 2006, 26, (12), 1462-1467.
Reddy, E. P.; Smirniotis, P. G., High-temperature sorbents for CO2 made of alkali metals doped on CaO supports. Journal of Physical Chemistry B, 2004, 108, (23), 7794-7800.
Rendek, E.; Ducom, G.; Germain, P., Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. Journal of Hazardous Materials, 2006, 128, (1), 73-79.
Shih, S.-M.; Ho, C. u.-S.; Song, Y.-S.; Lin, J.-P., Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Industrial and Engineering Chemistry Research, 1999, 38, (4), 1316-1322.
Shtepenko, O.; Hills, C.; Brough, A.; Thomas, M., The effect of carbon dioxide on beta-dicalcium silicate and Portland cement. Chemical Engineering Journal, 2006, 118, (1-2), 107-118.
Song, H. S.; Kim, C. H., Effect of surface carbonation on the hydration of CaO. Cement and Concrete Research, 1990, 20, (5), 815-823.
Sorochkin, M. A.; Shchrov, A. F.; Safonov, I. A., Study of the possibility of using carbon dioxide for accelerating the hardening of products made from Portland cement. Journal of Applied Chemistry, 1975, 48, 1211.
Stepkowska, E. T., Hypothetical transformation of Ca(OH)2 into CaCO3 in solid-state reactions of portland cement. Journal of Thermal Analysis and Calorimetry, 2005, 80, (3), 727-733.
Stolaroff, J. K.; Lowry, G. V.; Keith, D. W., Using CaO- and MgO-rich industrial waste streams for carbon sequestration. Energy Conversion and Management, 2005, 46, (5), 687-699.
Walton, J. C.; Bin-Shafique, S.; Smith, R. W.; Gutierrez, N.; Tarquin, A., Role of carbonation in transient leaching of cementitious wasteforms. Environmental Science and Technology, 1997, 31, (8), 2345-2349.
Wiles, C. C., Municipal solid waste combustion ash: state-of-the-knowledge. Journal of Hazardous Materials, 1996, 47, (1-3), 325-344.
Yang, T.; Keller, B.; Magyari, E.; Hametner, K.; Gunther, D., Direct observation of the carbonation process on the surface of calcium hydroxide crystals in hardened cement paste using an atomic force microscope. Journal of Materials Science, 2003, 38, (9), 1909-1916.
Young, J. F.; Berger, R. L.; Breese, J., Accelerated curing of compacted calcium silicate mortars on exposure to CO2. Journal of the American Ceramic Society, 1974, 57, (9), 394-397.
Zaki, M. I.; Knozinger, H.; Tesche, B.; Mekhemer, G. A. H., Influence of phosphonation and phosphation on surface acid-base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy. Journal of Colloid and Interface Science, 2006, 303, (1), 9-17.
中國鋼鐵股份有限公司,2003。爐石利用推廣手冊。
中興工程顧問股份有限公司,1998。台北市焚化廠焚化灰渣資源再利用可行性方案評估報告,期中報告。
王金鐘,2004。轉爐石作為基底層材料及其工程特性之研究,國立成功大學土木工程研究所,博士論文。
王鯤生、蕭炳欽,1993。都市垃圾焚化灰渣與地下水污泥共同高溫熔融處理之研究,第八屆廢棄物處理技術研討會論文集。
宋文方,2004。轉爐石吸收二氧化硫之研究,臺灣大學/化學工程學研究所,碩士論文。
何秀美,2002。污泥與底灰資源化為透水磚之研究,國立臺灣大學環境工程學研究所,碩士論文。
李春雄,2002。中鋼轉爐石回脹抑制方法之研究,國立成功大學土木工程研究所,碩士論文。
林育生,2000。煉鋼爐石酸性土壤改良-爐石施用量推估與其對土壤化學特性的影響,屏東科技大學環境工程與科學系,碩士論文。
林志棟,2001。氣冷爐石添加飛灰、底灰應用於基底層材料之研究,期末報告,國立中央大學土木工程研究所。
邱義豐、牟金錄,1993。中鋼自產脫硫渣資源化研究,第二屆工業減廢技術與策略研討會。
吳慶龍,1990。焚化底灰粗粒徑替代道路基層材料之可行性探討,淡江大學水資源及環境工程研究所,碩士論文。
郭子豪,2000。經前處理垃圾焚化底灰作為水泥原料之研究 ,國立成功大學環境工程研究所,碩士論文。
陳仁炫、邱義豐,1993。高爐渣及脫硫渣在強酸性土壤改良上之應用研究,酸性土壤之特性及其改良研討會。
黃兆龍,1984。混凝土性質與行為,詹氏書局。
陳雨詩,2005。粗粒徑垃圾焚化底渣燒製高強度輕質骨材之研究,淡江大學水資源及環境工程研究所,碩士論文。
陳怡伶,2005。都市垃圾焚化底渣於管溝回填應用之探討,中華大學土木工程研究所,碩士論文。
黃政昭,2004。垃圾焚化底渣應用於填方工程之研究,中華大學土木工程研究所,碩士論文。
郭炯煇,2006。中鋼爐渣工程性質之研討,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文。
陳毅明,2003。利用垃圾焚化底渣替代瀝青混凝土細粒料之研究,淡江大學土木工程研究所,碩士論文。
張乃斌,1998。垃圾焚化廠系統工程規劃與設計,茂昌圖書有限公司。
張明峰,1994。高爐石與脫硫渣之力學特性研究,國立成功大學土木工程研究所,碩士論文。
張祖恩,1996。台灣地區都市焚化灰渣物化組成與溶出特性探討,一般廢棄物與焚化灰渣資源化技術與實務研討會。
張信義,2003。煉鋼爐石去除水中砷及磷之研究,屏東科技大學環境工程與科學系,碩士論文。
曾燈聰,1992。轉爐石混凝土可行性研究,國立交通大學土木工程研究所,碩士論文。
楊貫一,1992。爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁。
楊萬發,賴聰華,1996。垃圾焚化灰燼特性分析及其固化處理之探討,第五屆廢棄物處理技術研討會。
潘建宏,2007。泥岩及轉爐石混合材壓製高壓地磚之可行性研究,國立高雄應用科技大學土木工程與防災科技研究所,碩士論文。
蔡恩榮,1993。KISH GRAPHITE回收與精製之研究,國立成功大學礦冶及材料科學研究所,碩士論文。
劉國忠,2001。煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第4期十月號,第117~118頁。
蔡樹鴻,1997。都市垃圾焚化灰渣資源化處理之基礎研究,國立成功大學資源工程研究所,碩士論文。
謝政峰,1998。焚化底灰再利用於燒製紅磚可行性之探討,淡江大學水資源及環境工程研究所,碩士論文。
謝竑舉,1992。轉爐石應用於混凝土摻料之研究,屏東科技大學環境工程與科學系,碩士論文。
蘇俊賓,1999。焚化底灰作為水泥替代原料可行性之研究,國立成功大學環境工程研究所,碩士論文。